Effects of levosimendan on cardiac remodeling and cardiomyocyte apoptosis in hypertensive Dahl/Rapp rats.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: Progression of heart failure in hypertensive Dahl rats is associated with cardiac remodeling and increased cardiomyocyte apoptosis. This study was conducted to study whether treatment with a novel inotropic vasodilator compound, levosimendan, could prevent hypertension-induced cardiac remodeling and cardiomyocyte apoptosis. EXPERIMENTAL APPROACH: 6-week-old salt-sensitive Dahl/Rapp rats received levosimendan (0.3 mg kg(-1) and 3 mg kg(-1) via drinking fluid) and high salt diet (NaCl 7%) for 7 weeks, Dahl/Rapp rats on low-salt diet served as controls. Blood pressure, cardiac functions by echocardiography, cardiomyocyte apoptosis by TUNEL technique, tissue morphology, myocardial expression of calcium cycling proteins, and markers of neurohumoral activation were determined. KEY RESULTS: Untreated Dahl/Rapp rats on high salt diet developed severe hypertension, cardiac hypertrophy and moderate systolic dysfunction. 38% of Dahl/Rapp rats (9/24) survived the 7-week-follow-up period. Cardiomyocyte apoptosis was increased by 6-fold during high salt diet. Levosimendan improved survival (survival rates in low- and high-dose levosimendan groups 12/12 and 9/12, p<0.001 and p=0.05, respectively), increased cardiac function, and ameliorated cardiac hypertrophy. Levosimendan dose-dependently prevented cardiomyocyte apoptosis. Levosimendan normalized salt-induced increased expression of natriuretic peptide, and decreased urinary noradrenaline excretion. Levosimendan also corrected salt-induced decreases in myocardial SERCA2a protein expression and myocardial SERCA2a/NCX-ratio. CONCLUSIONS AND IMPLICATIONS: Improved survival by the novel inotropic vasodilator levosimendan in hypertensive Dahl/Rapp rats is mediated, at least in part, by amelioration of hypertension-induced cardiac remodeling and cardiomyocyte apoptosis.
Project description:BackgroundThe additive effects of obesity and metabolic syndrome on left ventricular (LV) maladaptive remodeling and function in hypertension are not characterized.MethodsWe compared an obese spontaneously hypertensive rat model (SHR-ob) with lean spontaneously hypertensive rats (SHR-lean) and normotensive controls (Ctr). LV-function was investigated by cardiac magnetic resonance imaging and invasive LV-pressure measurements. LV-interstitial fibrosis was quantified and protein levels of phospholamban (PLB), Serca2a and glucose transporters (GLUT1 and GLUT4) were determined by immunohistochemistry.ResultsSystolic blood pressure was similar in SHR-lean and SHR-ob (252 ± 7 vs. 242 ± 7 mmHg, p = 0.398) but was higher when compared to Ctr (155 ± 2 mmHg, p < 0.01 for both). Compared to SHR-lean and Ctr, SHR-ob showed impaired glucose tolerance and increased body-weight. In SHR-ob, LV-ejection fraction was impaired vs. Ctr (46.2 ± 1.1 vs. 59.6 ± 1.9%, p = 0.007). LV-enddiastolic pressure was more increased in SHR-ob than in SHR-lean (21.5 ± 4.1 vs. 5.9 ± 0.81 mmHg, p = 0.0002) when compared to Ctr (4.3 ± 1.1 mmHg, p < 0.0001 for both), respectively. Increased LV-fibrosis together with increased myocyte diameters and ANF gene expression in SHR-ob were associated with increased GLUT1-protein levels in SHR-ob suggestive for an upregulation of the GLUT1/ANF-axis. Serca2a-protein levels were decreased in SHR-lean but not altered in SHR-ob compared to Ctr. PLB-phosphorylation was not altered.ConclusionIn addition to hypertension alone, metabolic syndrome and obesity adds to the myocardial phenotype by aggravating diastolic dysfunction and a progression towards systolic dysfunction. SHR-ob may be a useful model to develop new interventional and pharmacological treatment strategies for hypertensive heart disease and metabolic disorders.
Project description:BackgroundKetogenic diet (KD) has been proposed to be an effective lifestyle intervention in metabolic syndrome. However, the effects of KD on cardiac remodeling have not been investigated. Our aim was to investigate the effects and the underling mechanisms of KD on cardiac remodeling in spontaneously hypertensive rats (SHRs).Methods10-week-old spontaneously hypertensive rats were subjected to normal diet or ketogenic diet for 4 weeks. Then, their blood pressure and cardiac remodeling were assessed. Cardiac fibroblasts were isolated from 1- to 3-day-old neonatal pups. The cells were then cultured with ketone body with or without TGF-β to investigate the mechanism in vitro.Results4 weeks of KD feeding aggravated interstitial fibrosis and cardiac remodeling in SHRs. More interestingly, ketogenic diet feeding increased the activity of mammalian target of rapamyoin (mTOR) complex 2 pathway in the heart of SHRs. In addition, β-hydroxybutyrate strengthened the progression of TGF-β-induced fibrosis in isolated cardiac fibroblasts. mTOR inhibition reversed this effect, indicating that ketone body contributes to cardiac fibroblasts via mTOR pathway.ConclusionsThese data suggest that ketogenic diet may lead to adverse effects on the remodeling in the hypertensive heart, and they underscore the necessity to fully evaluate its reliability before clinical use.
Project description:AimsThe caspases are thought to be central mediators of the apoptotic program, but recent data indicate that apoptosis may also be mediated by caspase-independent mechanisms such as apoptosis-inducing factor (AIF). The role of AIF-induced apoptosis in heart, however, is currently not well understood. The aim of this study was to investigate the presence of and conditions for AIF-induced cardiac apoptosis in vitro.Methods and resultsHypertrophic cardiomyocyte (H-CM) cultures were prepared from the hearts of Dahl salt-sensitive rats fed a high salt diet. Apoptotic stimulation induced by hypoxia/reoxygenation or staurosporine (1 microM) enhanced AIF release in H-CMs compared with non-hypertrophic cardiomyocytes (N-CMs). Caspase inhibition using zVAD.fmk (25 microM) or overexpression of CrmA using recombinant adenovirus only partially protected N-CMs from apoptosis (63 +/- 0.93%) and provided no significant protection against apoptosis in hypertrophic cells (23 +/- 1.03%). On the other hand, poly-ADP-ribose polymerase inhibition using 4-AN (20 microM) during apoptotic stimulation blocked the release of AIF from mitochondria and significantly improved cell viability in hypertrophied cardiomyocytes (74 +/- 1.18%).ConclusionA caspase-dependent, apoptotic pathway is important for N-CM death, whereas a caspase-independent, AIF-mediated pathway plays a critical role in H-CMs.
Project description:We investigated the effects of esaxerenone, a novel, nonsteroidal, and selective mineralocorticoid receptor blocker, on cardiac function in Dahl salt-sensitive (DSS) rats. We provided 6-week-old DSS rats a high-salt diet (HSD, 8% NaCl). Following six weeks of HSD feeding (establishment of cardiac hypertrophy), we divided the animals into the following two groups: HSD or HSD + esaxerenone (0.001%, w/w). In survival study, all HSD-fed animals died by 24 weeks of age, whereas the esaxerenone-treated HSD-fed animals showed significantly improved survival. We used the same protocol with a separate set of animals to evaluate the cardiac function by echocardiography after four weeks of treatment. The results showed that HSD-fed animals developed cardiac dysfunction as evidenced by reduced stroke volume, ejection fraction, and cardiac output. Importantly, esaxerenone treatment decreased the worsening of cardiac dysfunction concomitant with a significantly reduced level of systolic blood pressure. In addition, treatment with esaxerenone in HSD-fed DSS rats caused a reduced level of cardiac remodeling as well as fibrosis. Furthermore, inflammation and oxidative stress were significantly reduced. These data indicate that esaxerenone has the potential to mitigate cardiac dysfunction in salt-induced myocardial injury in rats.
Project description:BackgroundThe nonsteroidal mineralocorticoid receptor blocker esaxerenone is effective in reducing blood pressure (BP).ObjectiveIn this study, we investigated esaxerenone-driven sodium homeostasis and its association with changes in BP in Dahl salt-sensitive (DSS) hypertensive rats.MethodsIn the different experimental setups, we evaluated BP by a radiotelemetry system, and sodium homeostasis was determined by an approach of sodium intake (food intake) and excretion (urinary excretion) in DSS rats with a low-salt diet (0.3% NaCl), high-salt diet (HSD, 8% NaCl), HSD plus 0.001% esaxerenone (w/w), and HSD plus 0.05% furosemide.ResultsHSD-fed DSS rats showed a dramatic increase in BP with a non-dipper pattern, while esaxerenone treatment, but not furosemide, significantly reduced BP with a dipper pattern. The cumulative sodium excretion in the active period was significantly elevated in esaxerenone- and furosemide-treated rats compared with their HSD-fed counterparts. Sodium content in the skin, skinned carcass, and total body tended to be lower in esaxerenone-treated rats than in their HSD-fed counterparts, while these values were unchanged in furosemide-treated rats. Consistently, sodium balance tended to be reduced in esaxerenone-treated rats during the active period. Histological evaluation showed that esaxerenone, but not furosemide, treatment attenuated glomerulosclerosis, tubulointerstitial fibrosis, and urinary protein excretion induced by high salt loading.ConclusionsCollectively, these findings suggest that an esaxerenone treatment-induced reduction in BP and renoprotection are associated with body sodium homeostasis in salt-loaded DSS rats.
Project description:The role of autophagy in high-salt (HS) intake associated hypertensive left ventricular (LV) remodeling remains unclear. The present study investigated the LV autophagic change and its association with the hypertensive LV remodeling induced by chronic HS intake in spontaneously hypertensive rats (SHR). Wistar Kyoto (WKY) rats and SHR were fed low-salt (LS; 0.5% NaCl) and HS (8.0% NaCl) diets and were subjected to invasive LV hemodynamic analysis after 8, 12 and 16 weeks of dietary intervention. Reverse transcription-quantitative PCR and western blot analysis were performed to investigate the expression of autophagy-associated key components. The LV morphologic staining was performed at the end of the study. The rat H9c2 ventricular myoblast cell-associated experiments were performed to explore the mechanism of HS induced autophagic change. A global autophagy-associated key component, as well as increased cardiomyocyte autophagic vacuolization, was observed after 12 weeks of HS intake. During this period, the heart from HS-diet-fed SHR exhibited a transition from compensated LV hypertrophy to decompensation, as shown by progressive impairment of LV function and interstitial fibrosis. Myocardial extracellular [Na+] and the expression of tonicity-responsive enhancer binding protein (TonEBP) was significantly increased in HS-fed rats, indicating myocardial interstitial hypertonicity by chronic HS intake. The global autophagic change and overt deterioration of LV function were not observed in LS-fed SHR and HS-fed WKY rats. The study of rat H9c2 cardiomyocytes demonstrated a cytosolic [Na+] elevation-mediated, reactive oxygen species-dependent the autophagic change occurred when exposed to an increased extracellular [Na+]. The present findings demonstrated that a myocardial autophagic change participates in the maladaptive LV remodeling induced by chronic HS intake in SHR, which provides a possible target for future intervention studies on HS-induced hypertensive LV remodeling.
Project description:Hypertensive cerebropathy is a pathological condition associated with cerebral edema and disruption of the blood-brain barrier. However, the molecular pathways leading to this condition remains obscure. We hypothesize that MMP-9 inhibition can help reducing blood pressure and endothelial disruption associated with hypertensive cerebropathy. Dahl salt-sensitive (Dahl/SS) and Lewis rats were fed with high-salt diet for 6 weeks and then treated without and with GM6001 (MMP inhibitor). Treatment of GM6001 (1.2 mg/kg body weight) was administered through intraperitoneal injections on alternate days for 4 weeks. GM6001 non-administered groups were given vehicle (0.9% NaCl in water) treatment as control. Blood pressure was measured by tail-cuff method. The brain tissues were analyzed for oxidative/nitrosative stress, vascular MMP-9 expression, and tight junction proteins (TJPs). GM6001 treatment significantly reduced mean blood pressure in Dahl/SS rats which was significantly higher in vehicle-treated Dahl/SS rats. MMP-9 expression and activity was also considerably reduced in GM6001-treated Dahl/SS rats, which was otherwise notably increased in vehicle-treated Dahl/SS rats. Similarly MMP-9 expression in cerebral vessels of GM6001-treated Dahl/SS rats was also alleviated, as devised by immunohistochemistry analysis. Oxidative/nitrosative stress was significantly higher in vehicle-treated Dahl/SS rats as determined by biochemical estimations of malondialdehyde, nitrite, reactive oxygen species, and glutathione levels. RT-PCR and immunohistochemistry analysis further confirmed considerable alterations of TJPs in hypertensive rats. Interestingly, GM6001 treatment significantly ameliorated oxidative/nitrosative stress and TJPs, which suggest restoration of vascular integrity in Dahl/SS rats. These findings determined that pharmacological inhibition of MMP-9 in hypertensive Dahl-SS rats attenuate high blood pressure and hypertension-associated cerebrovascular pathology.
Project description:Proteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.
Project description:BackgroundCardiac fibroblasts (CFs) and cardiomyocytes are the major cell populations in the heart. CFs not only support cardiomyocytes by producing extracellular matrix (ECM) but also assimilate myocardial nutrient metabolism. Recent studies suggest that the classical intercellular lactate shuttle may function in the heart, with lactate transported from CFs to cardiomyocytes. However, the underlying mechanisms regarding the generation and delivery of lactate from CFs to cardiomyocytes have yet to be explored.ResultsIn this study, we found that angiotensin II (Ang II) induced CFs differentiation into myofibroblasts that, driven by cell metabolism, then underwent a shift from oxidative phosphorylation to aerobic glycolysis. During this metabolic conversion, the expression of amino acid synthesis 5-like 1 (GCN5L1) was upregulated and bound to and acetylated mitochondrial pyruvate carrier 2 (MPC2) at lysine residue 19. Hyperacetylation of MPC2k19 disrupted mitochondrial pyruvate uptake and mitochondrial respiration. GCN5L1 ablation downregulated MPC2K19 acetylation, stimulated mitochondrial pyruvate metabolism, and inhibited glycolysis and lactate accumulation. In addition, myofibroblast-specific GCN5L1-knockout mice (GCN5L1fl/fl: Periostin-Cre) showed reduced myocardial hypertrophy and collagen content in the myocardium. Moreover, cardiomyocyte-specific monocarboxylate transporter 1 (MCT1)-knockout mice (MCT1fl/fl: Myh6-Cre) exhibited blocked shuttling of lactate from CFs to cardiomyocytes and attenuated Ang II-induced cardiac hypertrophy.ConclusionsOur findings suggest that GCN5L1-MPC2 signalling pathway alters metabolic patterns, and blocking MCT1 interrupts the fibroblast-to-cardiomyocyte lactate shuttle, which may attenuate cardiac remodelling in hypertension.
Project description:Adenosine-induced renovasodilation in Dahl rats is mediated via activation of adenosine(2A) receptors (A(2A)Rs) and stimulation of epoxyeicosatrienoic acid (EET) synthesis. Unlike Dahl salt-resistant rats, salt-sensitive rats exhibit an inability to upregulate the A(2A)R-EET pathway with salt loading; therefore, we examined the effect of in vivo inhibition of the A(2A)R-EET pathway on blood pressure and the natriuretic response to salt-loading in Dahl salt-resistant rats. N-Methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 20 mg/kg per day), an epoxygenase inhibitor, or ZM241385 (ZM; 5 mg/kg per day), an A(2A)R antagonist, was given daily as an IV bolus dose for 3 days before and after placing rats on high salt intake (2% saline). After 3 days of high salt, systolic blood pressure per 24 hours increased from 108+/-2 mm Hg to 136+/-5 mm Hg and 140+/-4 mm Hg when treated with MS-PPOH or ZM, respectively (P<0.001). Plasma levels of EETs and dihydroxyeicosatrienoic acids during salt loading and MS-PPOH (29.3+/-1.8 ng/mL) or ZM treatment (9.8+/-0.5 ng/mL) did not increase to the same extent as in vehicle-treated rats (59.4+/-1.7 ng/mL; P<0.001), and renal levels of EETs+dihydroxyeicosatrienoic acids were 2-fold lower with MS-PPOH or ZM treatment. On day 3 of the high salt intake, MS-PPOH- and ZM-treated rats exhibited a positive Na(+) balance, and plasma Na(+) levels were significantly increased (163.3+/-1.2 and 158.1+/-4.5 mEq/L, respectively) compared with vehicle-treated rats (142.1+/-1 mEq/L), reflecting a diminished natriuretic capacity. These data support a role for the A(2A)R-EET pathway in the adaptive natriuretic response to modulate blood pressure during salt loading.