Cerebral blood volume and oxygen supply uniformly increase following various intrathoracic pressure strains.
Ontology highlight
ABSTRACT: Intrathoracic pressure (ITP) swings challenge many physiological systems. The responses of cerebral hemodynamics to different ITP swings are still less well-known due to the complexity of cerebral circulation and methodological limitation. Using frequency-domain near-infrared spectroscopy and echocardiography, we measured changes in cerebral, muscular and cardiac hemodynamics in five graded respiratory maneuvers (RM), breath holding, moderate and strong Valsalva maneuvers (mVM/sVM) with 20 and 40 cmH2O increments in ITP, moderate and strong Mueller maneuvers (mMM/sMM) with 20 and 40 cmH2O decrements in ITP controlled by esophageal manometry. We found cerebral blood volume (CBV) maintains relative constant during the strains while it increases during the recoveries together with increased oxygen supply. By contrast changes in muscular blood volume (MBV) are mainly controlled by systemic changes. The graded changes of ITP during the maneuvers predict the changes of MBV but not CBV. Changes in left ventricular stroke volume and heart rate correlate to MBV but not to CBV. These results suggest the increased CBV after the ITP strains is brain specific, suggesting cerebral vasodilatation. Within the strains, cerebral oxygen saturation only decreases in sVM, indicating strong increment rather than decrement in ITP may be more challenging for the brain.
Project description:PurposeWe evaluated the impact of increasing tidal volume (V (t)), decreased chest wall compliance, and left ventricular (LV) contractility during intermittent positive-pressure ventilation (IPPV) on the relation between pulse pressure (PP) and LV stroke volume (SV(LV)) variation (PPV and SVV, respectively), and intrathoracic blood volume (ITBV) changes.MethodsSixteen pentobarbital-anesthetized thoracotomized mongrel dogs were studied both before and after propranolol-induced acute ventricular failure (AVF) (n = 4), with and without chest and abdominal pneumatic binders to decrease chest wall compliance (n = 6), and during V (t) of 5, 10, 15, and 25 ml/kg (n = 6). SV(LV) and right ventricular stroke volume (SV(RV)) were derived from electromagnetic flow probes around aortic and pulmonary artery roots. Arterial pressure was measured in the aorta using a fluid-filled catheter. Arterial PPV and SVV were calculated over three breaths as (max - min)/[(max + min)/2]. ITBV changes during ventilation were inferred from the beat-to-beat volume differences between SV(RV) and SV(LV).ResultsArterial PP and SV(LV) were tightly correlated during IPPV under all conditions (r (2) = 0.85). Both PPV and SVV increased progressively as V (t) increased and with thoraco-abdominal binding, and tended to decrease during AVF. SV(RV) phasically decreased during inspiration, whereas SV(LV) phasically decreased 2-3 beats later, such that ITBV decreased during inspiration and returned to apneic values during expiration. ITBV decrements increased with increasing V (t) or with thoraco-abdominal binding, and decreased during AVF owing to variations in SV(RV), such that both PPV and SVV tightly correlated with inspiration-associated changes in SV(RV) and ITBV.ConclusionArterial PP and SV(LV) are tightly correlated during IPPV and their relation is not altered by selective changes in LV contractility, intrathoracic pressure, or V (t). However, contractility, intrathoracic pressure, and V (t) directly alter the magnitude of PPV and SVV primarily by altering the inspiration-associated decreases in SV(RV) and ITBV.
Project description:Background: Although increasing cerebral perfusion pressure (CPP) is commonly accepted to improve brain tissue oxygen pressure (PbtO2), it remains unclear whether recommended CPP targets (i. e., >60 mmHg) would result in adequate brain oxygenation in brain injured patients. The aim of this study was to identify the target of CPP associated with normal brain oxygenation. Methods: Prospectively collected data including patients suffering from acute brain injury and monitored with PbtO2, in whom daily CPP challenge using vasopressors was performed. Initial CPP target was >60 mmHg; norepinephrine infusion was modified to have an increase in CPP of at least 10 mmHg at two different steps above the baseline values. Whenever possible, the same CPP challenge was performed for the following days, for a maximum of 5 days. CPP "responders" were patients with a relative increase in PbtO2 from baseline values > 20%. Results: A total of 53 patients were included. On the first day of assessment, CPP was progressively increased from 73 (70-76) to 83 (80-86), and 92 (90-96) mmHg, which resulted into a significant PbtO2 increase [from 20 (17-23) mmHg to 22 (20-24) mmHg and 24 (22-26) mmHg, respectively; p < 0.001]. Median CPP value corresponding to PbtO2 values > 20 mmHg was 79 (74-87) mmHg, with 2 (4%) patients who never achieved such target. Similar results of CPP targets were observed the following days. A total of 25 (47%) were PbtO2 responders during the CPP challenge on day 1, in particular if low PbtO2 was observed at baseline. Conclusions: PbtO2 monitoring can be an effective way to individualize CPP values to avoid tissue hypoxia. Low PbtO2 values at baseline can identify the responders to the CPP challenge.
Project description:What is the organization of cerebral microvascular oxygenation and morphology that allows adequate tissue oxygenation at different activity levels? We address this question in the mouse cerebral cortex using microscopic imaging of intravascular O2 partial pressure and blood flow combined with numerical modelling. Here we show that parenchymal arterioles are responsible for 50% of the extracted O2 at baseline activity, and the majority of the remaining O2 exchange takes place within the first few capillary branches. Most capillaries release little O2 at baseline acting as an O2 reserve that is recruited during increased neuronal activity or decreased blood flow. Our results challenge the common perception that capillaries are the major site of O2 delivery to cerebral tissue. The understanding of oxygenation distribution along arterio-capillary paths may have profound implications for the interpretation of blood-oxygen-level dependent (BOLD) contrast in functional magnetic resonance imaging and for evaluating microvascular O2 delivery capacity to support cerebral tissue in disease.
Project description:With the increasing interest in treatments for neonatal brain injury, bedside methods for detecting and assessing injury status and evolution are needed. We aimed to determine whether cerebral tissue oxygenation (StO(2)), cerebral blood volume (CBV), and estimates of relative cerebral oxygen consumption (rCMRO(2)) determined by bedside frequency-domain near-infrared spectroscopy (FD-NIRS) have the potential to distinguish neonates with brain injury from those with non-brain issues and healthy controls. We recruited 43 neonates < or =15 days old and >33 weeks gestational age (GA): 14 with imaging evidence of brain injury, 29 without suspicion of brain injury (4 unstable, 6 stable, and 19 healthy). A multivariate analysis of variance with Newman-Keuls post hoc comparisons confirmed group similarity for GA and age at measurement. StO(2) was significantly higher in brain injured compared with unstable neonates, but not statistically different from stable or healthy neonates. Brain-injured neonates were distinguished from all others by significant increases in CBV and rCMRO(2). In conclusion, although NIRS measures of StO(2) alone may be insensitive to evolving brain injury, increased CBV and rCMRO(2) seem to be useful for detecting neonatal brain injury and suggest increased neuronal activity and metabolism occurs acutely in evolving brain injury.
Project description:PurposeQuantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2'-values in these patients we evaluated the relationship between T2'-values and CBV in patients with unilateral high-grade large-artery stenosis.Materials and methodsData from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2'-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2' with different degrees of perfusion delay and compared to corresponding contralateral areas.ResultsNo significant elevations in cerebral rCBV were detected within areas with significantly decreased T2'-values. In contrast, rCBV was significantly decreased (p<0.05) in regions with severe perfusion delay and decreased T2'. Furthermore, no significant correlation between T2'- and rCBV-values was found.ConclusionsrCBV is not significantly increased in areas of decreased T2' and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2' should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2'-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease.
Project description:BackgroundTargeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion.MethodsWe performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP-CPPopt) and PbtO2 was investigated using natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg.ResultsOne hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8-78.3) hourly CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These dynamics were similar in patients with or without DCI.ConclusionsWe found a nonlinear relationship between PbtO2 and deviation of patients' CPP from CPPopt in aneurysmal subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.
Project description:Studies of protein adsorption on reversed-phase and ion exchange stationary phases demonstrated an increase in retention with increasing pressure, which is interpreted as a standard partial molar volume decrease during the transition of the protein from a mobile to a stationary phase. Investigation of the pressure effect on the retention of lysozyme and IgG on a cation exchange column surprisingly revealed a negative retention trend with the increase of pressure. Further investigation of this phenomenon was performed with β-lactoglobulin, which enabled adsorption to be studied on both cation and anion exchange columns using the same mobile phase with a pH of 5.2. The same surface charge and standard partial molar volume in the mobile phase allowed us to examine only the effect of adsorption. Interestingly, a negative retention trend with a pressure increase occurred on an anion exchange column while a positive trend was present on a cation exchange column. This indicates that the interaction type governs the change in the standard partial molar volume during adsorption, which is independent of the applied pressure. Increasing the protein charge by decreasing the pH of the mobile phase to 4 reversed the retention trend (into a negative) with a pressure increase on the cation exchange column. A further decrease of the pH value resulted in an even more pronounced negative trend. This counterintuitive behavior indicates an increase in the standard partial molar volume during adsorption with the protein charge, possibly due to intermolecular repulsion of adsorbed protein molecules. While a detailed mechanism remains to be elucidated, presented results demonstrate the complexity of ion exchange interactions that can be investigated simply by changing the column pressure.
Project description:BackgroundElevated cerebral fractional tissue oxygen extraction (cFTOE) is an adaptation to anemia of prematurity (AOP). cFTOE ≥0.4 is associated with brain injury in infants ≤30 weeks. This longitudinal study sought to investigate the utility of cFTOE in the evaluation of AOP.MethodsInfants ≤30 weeks estimated gestational age (EGA) underwent weekly hemoglobin, cerebral saturation, and pulse oximetry recordings from the second through 36 weeks post-menstrual age (PMA). Recordings were excluded if they were under 1 h or if hemoglobin was not measured within 7 days of recording. Mean cFTOE was calculated for each recording. Statistical analysis used linear mixed-effects modeling and receiver operating characteristic analysis.Results144 recordings from 39 infants (mean EGA 27.6 ± 2.2 weeks, BW 1139 ± 286 g) were included of whom 39% (15/39) were transfused. The mean recording length was 2.8 ± 1.3 h. There was a significant negative correlation between hemoglobin and cFTOE (R = -0.423, p ≤.001). In a multivariate model, adjusting for EGA, PMA, and patent ductus arteriosus treatment the AUC was 0.821. A critical increase in cFTOE occurred at a hemoglobin level of 9.6 g/dL.ConclusionsAOP is associated with a critical increase in cFTOE that occurs at a significantly higher hemoglobin level than standard clinical thresholds for transfusion.
Project description:Cerebral Autoregulation (CA), defined as the ability of the cerebral vasculature to maintain stable levels of blood flow despite changes in systemic blood pressure, is a critical factor in neurophysiological health. Magnetic resonance imaging (MRI) is a powerful technique for investigating cerebrovascular function, offering high spatial resolution and wide fields of view (FOV), yet it is relatively underutilized as a tool for assessment of CA. The aim of this study was to demonstrate the potential of using MRI to measure changes in cerebrovascular resistance in response to lower body negative pressure (LBNP). A Pulsed Arterial Spin Labeling (PASL) approach with short inversion times (TI) was used to estimate cerebral arterial blood volume (CBVa) in eight healthy subjects at baseline and -40mmHg LBNP. We estimated group mean CBVa values of 3.13 ± 1.00 and 2.70 ± 0.38 for baseline and lbnp respectively, which were the result of a differential change in CBVa during -40mmHg LBNP that was dependent on baseline CBVa. These data suggest that the PASL CBVa estimates are sensitive to the complex cerebrovascular response that occurs during the moderate orthostatic challenge delivered by LBNP, which we speculatively propose may involve differential changes in vascular tone within different segments of the arterial vasculature. These novel data provide invaluable insight into the mechanisms that regulate perfusion of the brain, and establishes the use of MRI as a tool for studying CA in more detail.