Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling
Ontology highlight
ABSTRACT: The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here we report a stroma-epithelia ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration, and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
Project description:The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma-epithelium ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
Project description:Idiopathic pulmonary fibrosis (IPF) consists of fibrotic alveolar remodeling and progressive loss of pulmonary function. Genetic and experimental evidence indicates that chronic alveolar injury and failure to properly repair the respiratory epithelium are intrinsic to IPF pathogenesis. Loss of alveolar type 2 (AT2) stem cells or mutations that either impair their self-renewal and/or impair their differentiation into AT1 cells can serve as a trigger of pulmonary fibrosis. Recent reports indicate increased YAP activity in respiratory epithelial cells in IPF lungs. Individual IPF epithelial cells with aberrant YAP activation in bronchiolized regions frequently co-express AT1, AT2, conducting airway selective markers and even mesenchymal or EMT markers, demonstrating 'indeterminate' states of differentiation and suggesting that aberrant YAP signaling might promote pulmonary fibrosis. Yet, Yap and Taz have recently also been shown to be important for AT1 cell maintenance and alveolar epithelial regeneration after Streptococcus pneumoniae-induced injury. To investigate how epithelial Yap/Taz might promote pulmonary fibrosis or drive alveolar epithelial regeneration, we inactivated the Hippo pathway in AT2 stem cells resulting in increased nuclear Yap/Taz, and found that this promotes their alveolar regenerative capacity and reduces pulmonary fibrosis following bleomycin injury by pushing them along the AT1 cell lineage. Vice versa, inactivation of both Yap1 and Wwtr1 (encoding Taz) or Wwtr1 alone in AT2 cell stem cells impaired alveolar epithelial regeneration and resulted in increased pulmonary fibrosis upon bleomycin injury. Interestingly, the inactivation of only Yap1 in AT2 stem cells promoted alveolar epithelial regeneration and reduced pulmonary fibrosis. Together, these data suggest that epithelial Yap promotes, and epithelial Taz reduces pulmonary fibrosis suggesting that targeting Yap but not Taz-mediated transcription might help promote AT1 cell regeneration and treat pulmonary fibrosis.
Project description:Epidermal growth factor family plays critical roles in intestinal epithelial proliferation and differentiation. The precise function of amphiregulin (AREG), a member of the epidermal growth factor family, in intestinal biology is largely unknown. The present study attempted to address the functional roles of AREG in intestinal epithelial regeneration. Total body irradiation was performed, and intestinal regeneration was assessed in AREG knockout mice. Genetically disruption of AREG significantly impaired intestinal regeneration after radiation injury. It is known that prostaglandin E(2) (PGE(2)) exerts radio-protective and growth-stimulatory effects on intestinal epithelium. We found that PGE(2) radio-protective action did not involve AREG. However, PGE(2) growth-stimulatory effects required functional AREG. Localization of AREG expression was determined by immunohistochemistry in regenerative intestine. The immunoreactivity of AREG was predominantly localized in intestinal subepithelial myofibroblasts (ISEMF). Primary ISEMF cultures were established, and growth-stimulatory actions of ISEMF-generated AREG were demonstrated in cell coculture system. In addition, we found that the cAMP/protein kinase A pathway robustly induced AREG in cultured ISEMF. These studies suggest that AREG plays critical roles in intestinal epithelial growth. Modulation of levels of AREG by targeting ISEMF represents a novel strategy for treatment of certain intestinal disorders.
Project description:Background and aimsActive intestinal stem cells are prone to injury by ionizing radiation. We previously showed that upon radiation-induced injury, normally quiescent reserve intestinal stem cells (rISCs) (marked by BMI1) are activated by Musashi-1 (MSI1) and exit from the quiescent state to regenerate the intestinal epithelium. This study aims to further establish the mechanism that regulates activation of Bmi1-CreER;Rosa26eYFP (Bmi1-CreER) rISCs following γ radiation-induced injury.MethodsBmi1-CreER mice were treated with tamoxifen to initiate lineage tracing of BMI1 (eYFP+) cells and exposed to 12 Gy of total body γ irradiation or sham. Intestinal tissues were collected and analyzed by immunofluorescence, Western blot, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and chromatin immunoprecipitation real-time polymerase chain reaction.ResultsAfter irradiation, increased expression of Msi1 in eYFP+ cells was accompanied by increased expression of Axin2, a WNT marker. Promoter studies of the Msi1 gene indicated that Msi1 is a WNT target gene. Coculture of stromal cells isolated from irradiated mice stimulated Bmi1-CreER-derived organoid regeneration more effectively than those from sham mice. Expression of WNT ligands, including Wnt2b, Wnt4, Wnt5a, and Rspo3, was increased in irradiated stromal cells compared with sham-treated stromal cells. Moreover, expression of the Sonic hedgehog (SHH) effector Gli1 was increased in stromal cells from irradiated mice. This was correlated with an increased expression of SHH in epithelial cells postirradiation, indicating epithelial-stromal interaction. Finally, preinjury treatment with SHH inhibitor cyclopamine significantly reduced intestinal epithelial regeneration and Msi1 expression postirradiation.ConclusionsUpon ionizing radiation-induced injury, intestinal epithelial cells increase SHH secretion, stimulating stromal cells to secrete WNT ligands. WNT activators induce Msi1 expression in the Bmi1-CreER cells. This stromal-epithelial interaction leads to Bmi1-CreER rISCs induction and epithelial regeneration.
Project description:We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser(916), an autophosphorylation site. An increase in PKD1 phosphorylation at Ser(916) was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser(916) was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.
Project description:Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.
Project description:Intestinal regeneration is crucial for functional restoration after injury, and nutritional molecules can play an important role in this process. Here, we found that arachidonic acid (AA) serves as a direct proliferation promoter of intestinal epithelial cells that facilitates small intestinal regeneration in both three-dimensional cultured organoids and mouse models. As shown in the study, during post-irradiation regeneration, AA positively regulates intestinal epithelial cell proliferation by upregulating the expression of Ascl2 and activating WNT signaling, but negatively regulates intestinal epithelial cell differentiation. AA acts as a delicate regulator that efficiently facilitates epithelial tissue repair by activating radiation-resistant Msi1+ cells rather than Lgr5+ cells, which are extensively considered WNT-activated crypt base stem cells. Additionally, short-term AA treatment maintains optimal intestinal epithelial homeostasis under physiological conditions. As a result, AA treatment can be considered a potential therapy for irradiation injury repair and tissue regeneration.
Project description:Organ growth and tissue homeostasis rely on the proliferation and differentiation of progenitor cell populations. In the developing lung, localized Fgf10 expression maintains distal Sox9-expressing epithelial progenitors and promotes basal cell differentiation in the cartilaginous airways. Mesenchymal Fgf10 expression is induced by Wnt signaling but inhibited by Shh signaling, and epithelial Fgf10 signaling activates β-catenin signaling. The Hippo pathway is a well-conserved signaling cascade that regulates organ size and stem/progenitor cell behavior. Here, we show that Hippo signaling promotes lineage commitment of lung epithelial progenitors by curbing Fgf10 and β-catenin signaling. Our findings show that both inactivation of the Hippo pathway (nuclear Yap) or ablation of Yap result in increased β-catenin and Fgf10 signaling, suggesting a cytoplasmic role for Yap in epithelial lineage commitment. We further demonstrate redundant and non-redundant functions for the two nuclear effectors of the Hippo pathway, Yap and Taz, during lung development.
Project description:Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease.
Project description:Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury, although the repair mechanisms are unclear. Here, we found that Bach2 deficiency promotes intestinal epithelial cell proliferation during homeostasis. Moreover, genetic inactivation of Bach2 in mouse intestinal epithelium facilitated crypt regeneration after irradiation, resulting in a reduction in mortality. RNA-sequencing analysis of isolated crypts revealed that Bach2 deficiency altered the expression of numerous genes, including those regulating double-strand break repair. Mechanistic characterizations indicated that Bach2 deletion facilitated DNA repair in intestinal crypt cells, as evidenced by faster resolution of γ-H2AX and 53BP1 foci in Bach2-/- crypt cells, compared with Bach2+/+ control. Together, our studies highlight that Bach2 deficiency promotes intestinal regeneration by accelerating DNA repair in intestinal stem cells after radiation damage.