Project description:We found frequent epigenetic silencing of microRNA-34b/c in human colorectal cancer. Introduction of miR-34b/c into a colorectal cancer cell line induced significant changes in gene expression profile. We also found overlap between the genes downregulated by miR-34b/c and those downregulated by DAC. Keywords: dose response A colorecal cancer cell line HCT116 was transfected with miR-34b or -c precursor or negative control. Also, HCT116 was treated with 5-aza-2'-deoxycytidine (DAC) or mock. Genes up- or downregulated by miR-34b/c and those by DAC was compared.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer. RNF2 is overexpressed in immortalized human melanocytes HMEL-BRAFV600E to address impact of RNF2 overexpression in melanoma. GFP was overexpressed in HMEL-BRAFV600E cells as a control cell line. Expression profiling using microarray was performed and compared between RNF2 overexpressing versus GFP overexpressing HMEL-BRAFV600E cells.
Project description:Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of gain of function and loss of function studies, we establish that RNF2 is oncogenic and pro-metastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to mono-ubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity did not require its catalytic activity nor derives from its canonical gene repression function, rather RNF2 drives proliferation through direct transcriptional up-regulation of the cell cycle regulator CCND2. In summary, RNF2 regulates distinct biological processes in the genesis and progression of melanoma via distinct molecular mechanisms, underscoring the complex and multi-faceted actions of epigenetic regulators in cancer. RNF2 is overexpressed in immortalized human melanocytes HMEL-BRAFV600E to address impact of RNF2 overexpression in melanoma and identify RNF2 target genes. ChIP was performed to identify RNF2 binding sites using antibody against the V5 tag.