Genomics

Dataset Information

0

Loss of heterozygosity drives adaptation in hybrid yeast


ABSTRACT: CGH arrays for Smukowski Heil, et al MBE 2017. Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we address these questions using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae x Saccharomyces uvarum and their parentals. We evolved these strains in nutrient limited conditions for hundreds of generations and sequenced the resulting cultures to identify genomic changes. Analysis of 16 hybrid clones and 16 parental clones identified numerous point mutations, copy number changes, and loss of heterozygosity events, including species biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated loss of heterozygosity at the high affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the loss of heterozygosity is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity, and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.

ORGANISM(S): Saccharomyces bayanus Saccharomyces uvarum Saccharomyces cerevisiae Saccharomyces cerevisiae x Saccharomyces uvarum

PROVIDER: GSE95086 | GEO | 2017/02/21

SECONDARY ACCESSION(S): PRJNA376031

REPOSITORIES: GEO

Similar Datasets

2013-10-21 | E-GEOD-38875 | biostudies-arrayexpress
2015-03-30 | GSE46192 | GEO
2015-03-30 | E-GEOD-46192 | biostudies-arrayexpress
2012-07-31 | E-GEOD-24479 | biostudies-arrayexpress
2016-12-01 | GSE35549 | GEO
2013-11-29 | GSE50049 | GEO
2012-08-01 | GSE24479 | GEO
2009-04-01 | GSE14708 | GEO
2013-11-29 | E-GEOD-50049 | biostudies-arrayexpress
2010-06-20 | E-GEOD-14708 | biostudies-arrayexpress