Analysis of site and structure specific core fucosylation in liver disease
Ontology highlight
ABSTRACT: Analysis of site and structure specific core fucosylation in liver disease progression using exoglycosidase-assisted data-independent LC-MS/MS
Project description:Analysis of site and structure specific core fucosylation in liver disease progression using exoglycosidase-assisted data-independent LC-MS/MS
Project description:Core fucosylation and O-GlcNAcylation are two most famous protein glycosylations and regulate diverse physiological and pathological processes in living organism. Core fucosylation is a protein glycosylation in which a L-fucose residue attaches to the innermost N-acetylglucosamine (GlcNAc) of N-glycan through α1, 6 linkage. O-GlcNAcylation is a dy-namic protein glycosylation where D-GlcNAc moieties attaches to serine or threonine residues of proteins. Here, a “two-birds one stone” strategy is described for site-specific analysis of the core fucosylation and O-GlcNAcylation. The de-scribed strategy allows the simultaneously profiling of core-fucosylated glycoproteome and O-GlcNAcylated glycoprote-ome from one complex sample.
Project description:Dysregulated metabolism in glioblastoma (GBM), the deadliest brain tumor of adults, offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome and the glycoproteome of human subgroup-specific GBM stem cells (GSCs). Here we report that L-Fucose abundance and core fucosylation activation are more highly enhanced in mesenchymal (MES) than in proneural (PN) GSCs; this pattern is retained in subgroup-specific xenografts and, most significantly, retrieved in subgroup-affiliated human patients’ samples. Genetic and pharmacological inhibition of core fucosylation in MES GBM preclinical models results in significant reduction in tumor burden. LC/MS-based glycoproteomic screening indicates that most MES-restricted core fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion and integrin-mediated signaling. Notably, selective L-Fucose accumulation in MES GBMs is demonstrated by pre-clinical minimally-invasive positron emission tomography (PET), implying this metabolite as a potential subgroup-restricted biomarker. Overall, these findings indicate that L-Fucose pathway activation in MES GBM offers subgroup-specific, GSC-restricted dependencies to be exploited as diagnostic markers and actionable therapeutic targets.
Project description:Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post59 translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In both cancer cell cultures and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycomes revealed that fucosylation of the antioxidant PON1 is a critical component of the therapy66 induced secretome. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Non-specific and PON1-specific secretome deglycosylation both limited the expansion of resistant clones in a tumor regression model. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.
Project description:Glycoproteomic screening indicates that core fucosylation activation is more highly enhancedin mesenchymal (MES) than in proneural (PN) glioblastoma cancer stem cells (GSCs) and this pattern is retained in subgroup-specific xenograftsand human patients’ samples. Most MES-restricted core fucosylated proteins are involved in therapeutically relevant pathological processes, such as extracellular matrix interaction and tumor invasion.
Project description:Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
Project description:Natural Killer (NK) cell development and effector function requires context-dependent signalling via numerous receptors including the IL-15 receptor. The modulation of receptor signalling can be regulated by the post-translational modifications affecting receptor turnover and trafficking. Core fucosylation is one such modification known to impact receptor expression and is uniquely mediated by fucosyltransferase 8 (FUT8). To investigate core fucosylation in NK cell biology, we generated mice lacking FUT8 in NK cells (Fut8fl/flNcr1cre/+). Loss of core fucose resulted in pronounced NK lymphopenia in Fut8fl/flNcr1cre/+ mice associated with a reduction in IL-15 receptor expression and loss of in vivo proliferation. Inhibition of intrinsic apoptosis pathways could not overcome compromised IL-15 receptor signalling to rescue FUT8-null NK cell development delineating the contribution of proliferation to NK cell homeostasis. Surprisingly, loss of core fucose enhanced NK cell expansion following viral infection and this was associated with upregulation of IL-2Rα following pro-inflammatory cytokine exposure and enhanced IL-2-mediated proliferation. Lastly, loss of FUT8 activity impaired TGFBR2 expression and immunosuppressive effects of TGF-β on NK cells. Taken together, we have identified fucosyltransferase 8 as a key modulator of NK cell development and function by regulating IL-15 receptor responsiveness.
Project description:We present a mass spectrometry-based glycoproteomics method that employs sequential treatment of intact glycopeptides with enzymes (STAGE) to simultaneously analyze site-specific core fucosylation and N-linked glycosylation of glycoproteins.
Project description:Protein core-fucosylation plays a crucial role in regulating cell surface protein functions and is involved in various biological processes, including cell signaling, immune response, and cancer progression. However, core-fucosylation (CF) poses particular challenges in identification and characterization due to its low abundance and the high heterogeneity of N-glycosylation. To overcome these challenges, this study systematically investigated the oxidation mechanisms of core-fucose and developed a selective enrichment strategy that combines chemical oxidation with glycan truncation for cell surface core-fucosylation characterization. Specifically, sodium periodate was employed to selectively oxidize cell surface glycans. In combination with the endoglycosidases Endo M and Endo F3, which possessed complementary substrate specificity and broad tolerance, this approach efficiently truncated N-glycans and leaving core-fucosylated glycopeptides bearing aldehyde tags. Utilizing reversible hydrazide chemistry, core-fucosylated glycopeptides were selectively enriched. The developed strategy was applied to profile cell surface core-fucosylatd protein in HeLa cells, which yielded 74 core-fucosylated glycopeptides corresponding to 21 key cell surface drug targets, thereby validating the efficacy of this approach. Collectively, this study systematically investigatd the mechnism of core-fucosylation oxidation and developed a new technical tool for studying cell surface protein core-fucosylation.