Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:Cancer-associated fibroblasts (CAFs) have been recognized as important contributors to cancer development and progression. However, opposing evidence has been published whether CAFs, in addition to epigenetic, also undergo somatic genetic alterations and whether these changes contribute to carcinogenesis and tumour progression. We combined multiparameter DNA flow cytometry, flow-sorting and 6K SNP-arrays to study DNA aneuploidy, % S-phase, loss of heterozygosity (LOH) and copy number alterations (CNAs) to study somatic genetic alterations in cervical cancer-associated stromal cell fractions (n = 58) from formalin-fixed, paraffin-embedded (FFPE) samples. Tissue sections were examined for the presence of CAFs. Microsatellite analysis was used to study LOH. By flow cytometry we found no proof for DNA aneuploidy in the vimentin-positive stromal cell fractions of any samples (CV G0G1 population 3.7% +/- 1.2; S-phase 1.4% +/- 1.8). The genotype concordance between the stromal cells and the paired normal endometrium samples was > 99.9%. No evidence for CNAs or LOH was found in the stromal cell fractions. In contrast, high frequencies of DNA content abnormalities (43/57), a significant higher S-phase (14.6% +/- 8.5)(p = 0.0001) and substantial numbers of CNAs and LOH were identified in the keratin-positive epithelial cell fractions (CV G0G1 population 4.1% +/- 1.0). Smooth muscle actin and vimentin immunohistochemistry verified the presence of CAFs in all cases tested. LOH hot-spots on chromosomes 3p, 4p and 6p were confirmed by microsatellite analysis but the stromal cell fractions showed retention of heterozygosity only. From our study we conclude that stromal cell fractions from cervical carcinomas are DNA diploid, have a genotype undistinguishable from patient-matched normal tissue and are genetically stable. Stromal genetic changes do not seem to play a role during cervical carcinogenesis and progression. In addition, the stromal cell fraction of cervical carcinomas can be used as reference allowing large retrospective studies of archival FFPE tissues for which no normal reference tissue is available. Paired experiment, Endometrial (non-tumor) cells vs stromal cells from cervical tumors. Biological replicates: 58 patients. From 5 tumors also the tumor fraction was profiled.
Project description:Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid tumours was subsequently analysed (n = 20). Methods Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage (allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways. Results All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7 (seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation. The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs. Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent). Conclusions We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation, heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for future research. 28 thyroid tumors from 27 patients were profiled by SNP array. Comparisons between different types were made.
Project description:Current biomarkers of renal disease in systemic vasculitis lack predictive value and are insensitive to early damage. To identify novel biomarkers of renal vasculitis flare, we analysed the longitudinal urinary metabolomic profile of a rat model of anti-neutrophil cytoplasmic antibody (ANCA) vasculitis. Wistar-Kyoto (WKY) rats were immunised with human myeloperoxidase (MPO). Urine was obtained at regular intervals for 181 days, after which relapse was induced by re-challenge with MPO. Urinary metabolites were assessed in an unbiased fashion using nuclear magnetic resonance (NMR) spectroscopy, and analysed using partial least squares discriminant analysis (PLS-DA) and partial least squares regression (PLS-R). At 56 days post-immunisation, we found that rats with vasculitis had a significantly different urinary metabolite profile than control animals; the observed PLS-DA clusters dissipated between 56 and 181 days, and re-emerged with relapse. The metabolites most altered in rats with active or relapsing vasculitis were trimethylamine N-oxide (TMAO), citrate and 2-oxoglutarate. Myo-inositol was also moderately predictive. The key urine metabolites identified in rats were confirmed in a large cohort of patients using liquid chromatography-mass spectrometry (LC-MS). Hypocitraturia and elevated urinary myo-inositol remained associated with active disease, with the urine myo-inositol:citrate ratio being tightly correlated with active renal vasculitis.
Project description:Asthma is a complex syndrome associated with episodic decompensations provoked by aeroaller-gen exposures. The underlying pathophysiological states driving exacerbations are latent in the resting state and do not adequately inform biomarker-driven therapy. A better understanding of the pathophysiological pathways driving allergic exacerbations is needed. We hypothesized that disease-associated pathways could be identified in humans by unbiased metabolomics of bron-choalveolar fluid (BALF) during the peak inflammatory response provoked by a bronchial aller-gen challenge. We analyzed BALF metabolites in samples from 12 volunteers who underwent segmental bronchial antigen provocation (SBP-Ag). Metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC–MS/MS) followed by pathway analysis and cor-relation with airway inflammation. SBP-Ag induced statistically significant changes in 549 fea-tures that mapped to 72 uniquely identified metabolites. From these features, two distinct induci-ble metabolic phenotypes were identified by the principal component analysis, partitioning around medoids (PAM) and k-means clustering. Ten index metabolites were identified that in-formed the presence of asthma-relevant pathways, including unsaturated fatty acid produc-tion/metabolism, mitochondrial beta oxidation of unsaturated fatty acid, and bile acid metabolism. Pathways were validated using proteomics in eosinophils. A segmental bronchial allergen chal-lenge induces distinct metabolic responses in humans, providing insight into pathogenic and pro-tective endotypes in allergic asthma.
Project description:The neuromuscular junction (NMJ) is a specialized tripartite synapse composed of the motor axon terminal, covered by perisynaptic Schwann cells (PSCs), and the muscle fibre, separated by a basal lamina. It is exposed to different kind of injures such as mechanical traumas, pathogens including neurotoxins, and neuromuscular diseases such as amyotrophic lateral sclerosis and immune-mediated disorders, and has retained throughout vertebrate evolution an intrinsic ability for repair and regeneration, at variance from central synapses1. Following peripheral nerve injury, an intense but poorly defined crosstalk takes place at the NMJ among its components, functional to nerve terminal regeneration. To identify crucial factors released by PSCs and the muscle to induce nerve regrowth, we performed a transcriptome analysis of the NMJ at different time points after injection of -latrotoxin, a presynaptic neurotoxin isolated from the venom of the black widow spider. This toxin is a simple and controlled method to induce an acute, localized and reversible nerve terminal degeneration not blurred by inflammation, and can help to identify molecules involved in the intra- and inter-cellular signalling governing NMJ regeneration.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:BackgroundWhether a causative link exists between brain death (BD) and intestinal microbiota dysbiosis is unclear, and the distortion in liver metabolism associated with BD requires further exploration.MethodsA rat model of BD was constructed and sustained for 9 h (BD group, n=6). The sham group (n=6) underwent the same procedures, but the catheter was inserted into the epidural space without ballooning. Intestinal contents and portal vein plasma were collected for microbiota sequencing and microbial metabolite detection. Liver tissue was resected to investigate metabolic alterations, and the results were compared with those of a sham group.Resultsα-diversity indexes showed that BD did not alter bacterial diversity. Microbiota dysbiosis occurred after 9 h of BD. At the family level, Peptostreptococcaceae and Bacteroidaceae were both decreased in the BD group. At the genus level, Romboutsia, Bacteroides, Erysipelotrichaceae_UCG_004, Faecalibacterium, and Barnesiella were enriched in the sham group, whereas Ruminococcaceae_UCG_007, Lachnospiraceae_ND3007_group, and Papillibacter were enriched in the BD group. Short-chain fatty acids, bile acids, and 132 other microbial metabolites remained unchanged in both the intestinal contents and portal vein plasma of the BD group. BD caused alterations in 65 metabolites in the liver, of which, carbohydrates, amino acids, and organic acids accounted for 64.6%. Additionally, 80.0% of the differential metabolites were decreased in the BD group livers. Galactose metabolism was the most significant metabolic pathway in the BD group.ConclusionsBD resulted in microbiota dysbiosis in rats; however, this dysbiosis did not alter microbial metabolites. Deterioration in liver metabolic function during extended periods of BD may reflect a continuous worsening in energy deficiency.
Project description:PurposeTo reveal the metabolic differences of follicle fluid (FF) and granulosa cell (GC) between younger women and advanced age women in ART cycles, and then find potential therapeutic targets of ovarian aging.MethodsForty-five patients were included in the study and they were divided into three groups according to their age (Group A: 20-30 years old; Group B: 30-35 years old; Group C: 35-45 years old). All patients underwent controlled ovarian stimulation using the follicular phase long-acting protocol, FF and GC were obtained 36-38 hours after HCG administration. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for metabolomics analysis and metabolic pathway analysis (MetPA) was utilized to find related pathways.ResultsBetween group A and group C, there were 72 and 21 differential metabolites in FF and GC, respectively. KEGG enrichment analysis showed six pathways were co-enriched by the differential metabolites of FF and GC. Among them, we noticed that in the pathway GABAergic synapse, GABA (gamma-aminobutyric acid) was down-regulated in GC, while its downstream metabolite succinic acid was down-regulated in FF. Further ROC curve analysis was performed on these two metabolites, and the results showed that they all had a favorable predictive value.ConclusionThis study indicated that GABA and succinic acid could be potential therapeutic targets for ovarian aging, GABA may delay ovarian aging and improve ovarian function through its antioxidant properties, which may be a future direction of clinical treatment.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.