Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Cancer-associated fibroblasts (CAFs) have been recognized as important contributors to cancer development and progression. However, opposing evidence has been published whether CAFs, in addition to epigenetic, also undergo somatic genetic alterations and whether these changes contribute to carcinogenesis and tumour progression. We combined multiparameter DNA flow cytometry, flow-sorting and 6K SNP-arrays to study DNA aneuploidy, % S-phase, loss of heterozygosity (LOH) and copy number alterations (CNAs) to study somatic genetic alterations in cervical cancer-associated stromal cell fractions (n = 58) from formalin-fixed, paraffin-embedded (FFPE) samples. Tissue sections were examined for the presence of CAFs. Microsatellite analysis was used to study LOH. By flow cytometry we found no proof for DNA aneuploidy in the vimentin-positive stromal cell fractions of any samples (CV G0G1 population 3.7% +/- 1.2; S-phase 1.4% +/- 1.8). The genotype concordance between the stromal cells and the paired normal endometrium samples was > 99.9%. No evidence for CNAs or LOH was found in the stromal cell fractions. In contrast, high frequencies of DNA content abnormalities (43/57), a significant higher S-phase (14.6% +/- 8.5)(p = 0.0001) and substantial numbers of CNAs and LOH were identified in the keratin-positive epithelial cell fractions (CV G0G1 population 4.1% +/- 1.0). Smooth muscle actin and vimentin immunohistochemistry verified the presence of CAFs in all cases tested. LOH hot-spots on chromosomes 3p, 4p and 6p were confirmed by microsatellite analysis but the stromal cell fractions showed retention of heterozygosity only. From our study we conclude that stromal cell fractions from cervical carcinomas are DNA diploid, have a genotype undistinguishable from patient-matched normal tissue and are genetically stable. Stromal genetic changes do not seem to play a role during cervical carcinogenesis and progression. In addition, the stromal cell fraction of cervical carcinomas can be used as reference allowing large retrospective studies of archival FFPE tissues for which no normal reference tissue is available. Paired experiment, Endometrial (non-tumor) cells vs stromal cells from cervical tumors. Biological replicates: 58 patients. From 5 tumors also the tumor fraction was profiled.
Project description:Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid tumours was subsequently analysed (n = 20). Methods Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage (allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways. Results All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7 (seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation. The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs. Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent). Conclusions We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation, heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for future research. 28 thyroid tumors from 27 patients were profiled by SNP array. Comparisons between different types were made.
Project description:The aim of this experiment was to profile the DNase-I accessibility landscape of human islets and stage 3 cells within our human in vitro beta-cell differentiation protocol.
Project description:The severe harm of depression to human life has attracted great attention to neurologists, but its pathogenesis is extremely complicated and has not yet been fully elaborated. Here, we provided a new strategy for revealing the specific pathways of abnormal brain glucose catabolism in depression, which from the supply of energy substrates and the evaluation of mitochondrial structure and function. By using stable isotope-resolved metabolomics technique, we discovered the tricarboxylic acid cycle (TCA cycle) is blocked and the gluconeogenesis is abnormally activated in chronic unpredictable mild stress (CUMS) rats. In addition, our results showed an interesting phenomenon that the brain attempted to activate all possible metabolic enzymes in energy-producing pathways, but CUMS rats still exhibited a low TCA cycle activity due to impaired mitochondria. Depression caused mitochondrial structure and function impaired, and then led to abnormal brain glucose catabolism. The combination of the stable isotope-resolved metabolomics and mitochondrial structure and function analysis can accurately clarify the mechanism of depression. The mitochondrial pyruvate carrier and acetyl-CoA maybe the key targets for depression treatment. The strategy provides a unique insight for exploring the mechanism of depression, the discovery of new targets, and the development of ideal novel antidepressants.
Project description:Asthma is a complex syndrome associated with episodic decompensations provoked by aeroaller-gen exposures. The underlying pathophysiological states driving exacerbations are latent in the resting state and do not adequately inform biomarker-driven therapy. A better understanding of the pathophysiological pathways driving allergic exacerbations is needed. We hypothesized that disease-associated pathways could be identified in humans by unbiased metabolomics of bron-choalveolar fluid (BALF) during the peak inflammatory response provoked by a bronchial aller-gen challenge. We analyzed BALF metabolites in samples from 12 volunteers who underwent segmental bronchial antigen provocation (SBP-Ag). Metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC–MS/MS) followed by pathway analysis and cor-relation with airway inflammation. SBP-Ag induced statistically significant changes in 549 fea-tures that mapped to 72 uniquely identified metabolites. From these features, two distinct induci-ble metabolic phenotypes were identified by the principal component analysis, partitioning around medoids (PAM) and k-means clustering. Ten index metabolites were identified that in-formed the presence of asthma-relevant pathways, including unsaturated fatty acid produc-tion/metabolism, mitochondrial beta oxidation of unsaturated fatty acid, and bile acid metabolism. Pathways were validated using proteomics in eosinophils. A segmental bronchial allergen chal-lenge induces distinct metabolic responses in humans, providing insight into pathogenic and pro-tective endotypes in allergic asthma.
Project description:Long non-coding RNAs (lncRNAs) are recently characterized players that are involved in the regulatory circuitry of self-renewal in human embryonic stem cells (hESCs). However, the specific roles of lncRNAs in this circuitry are poorly understood. Here, we determined that growth-arrest-specific transcript 5 (GAS5), which is a known tumor suppressor and growth arrest gene, is abundantly expressed in the cytoplasm of hESCs and essential for hESC self-renewal. GAS5 depletion in hESCs significantly impaired their pluripotency and self-renewal ability, whereas GAS5 overexpression in hESCs accelerated the cell cycle, enhanced their colony formation ability and increased pluripotency marker expression. By RNA sequencing and bioinformatics analysis, we determined that GAS5 activates NODAL-SMAD2/3 signaling by sustaining the expression of NODAL, which plays a key role in hESC self-renewal but not in somatic cell growth. Further studies indicated that GAS5 functions as a competing endogenous RNA (ceRNA) to protect NODAL mRNA against degradation and that GAS5 transcription is directly controlled by the core pluripotency transcriptional factors (TFs). Taken together, we suggest that the core TFs, GAS5 and NODAL-SMAD2/3 form a feed-forward loop to maintain the hESC self-renewal process. These findings are specific to ESCs and did not occur in the somatic cell lines we tested; therefore, our findings also provide evidence that the functions of lncRNAs vary in different biological contexts. We analyzed long non-coding RNAs in two hESC cell lines (X-01 and H1), and found GAS5 is highly expressed and functional in maintaining hESC self-renewal. We generate stable overexpressed or knockdown hESC cell lines using lentiviral approach. We transfected cells initialy after passage, and lentiviruses are added with daily medium change for three days (at a final concentration of 10^5 IU/ml). Puromycin is added for selection and supplied with daily medium change. Stable cell lines are established after two passages and verified under fluorescence scope. Total RNAs and miRNAs are extracted separately of all three cell lines (LV-NC, LV-GAS5 and LV-shGAS5) and put to sequencing.
Project description:The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.