Project description:The development of improved mass spectrometers and supporting computational tools is expected to enable the rapid annotation of whole metabolomes. Essential for the progress is the identification of strengths and weaknesses of novel instrumentation in direct comparison to previous instruments. Orbitrap liquid chromatography (LC)-mass spectrometry (MS) technology is now widely in use, while Orbitrap gas chromatography (GC)-MS introduced in 2015 has remained fairly unexplored in its potential for metabolomics research. This study aims to evaluate the additional knowledge gained in a metabolomics experiment when using the high-resolution Orbitrap GC-MS in comparison to a commonly used unit-mass resolution single-quadrupole GC-MS. Samples from an osmotic stress treatment of a non-model organism, the microalga Skeletonema costatum, were investigated using comparative metabolomics with low- and high-resolution methods. Resulting datasets were compared on a statistical level and on the level of individual compound annotation. Both MS approaches resulted in successful classification of stressed vs. non-stressed microalgae but did so using different sets of significantly dysregulated metabolites. High-resolution data only slightly improved conventional library matching but enabled the correct annotation of an unknown. While computational support that utilizes high-resolution GC-MS data is still underdeveloped, clear benefits in terms of sensitivity, metabolic coverage, and support in structure elucidation of the Orbitrap GC-MS technology for metabolomics studies are shown here.
Project description:We compared the performance of gas chromatography time-of-flight mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) for metabolite biomarker discovery. Metabolite extracts from 109 human serum samples were analyzed on both platforms with a pooled serum sample analyzed after every 9 biological samples for the purpose of quality control (QC). The experimental data derived from the pooled QC samples showed that the GC×GC-MS platform detected about three times as many peaks as the GC-MS platform at a signal-to-noise ratio SNR ≥ 50, and three times the number of metabolites were identified by mass spectrum matching with a spectral similarity score Rsim ≥ 600. Twenty-three metabolites had statistically significant abundance changes between the patient samples and the control samples in the GC-MS data set while 34 metabolites in the GC×GC-MS data set showed statistically significant differences. Among these two groups of metabolite biomarkers, nine metabolites were detected in both the GC-MS and GC×GC-MS data sets with the same direction and similar magnitude of abundance changes between the control and patient sample groups. Manual verification indicated that the difference in the number of the biomarkers discovered using these two platforms was mainly due to the limited resolution of chromatographic peaks by the GC-MS platform, which can result in severe peak overlap making subsequent spectrum deconvolution for metabolite identification and quantification difficult.
Project description:Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit. Samples were analyzed using gas chromatography (GC) × GC/time-of-flight (TOF)-mass spectrometry (MS) in a suspect screening analysis, with follow-up confirmation analysis of 19 substances. A standard reference material blood sample was also analyzed through the confirmation process for comparison. The pools were stratified by sex (female and male) and by age (≤45 and >45). Publicly available information on potential exposure sources was aggregated to annotate presence in serum as either endogenous, food/nutrient, drug, commerce, or contaminant. Of the 544 unique substances tentatively identified by spectral matching, 472 were identified in females, while only 271 were identified in males. Surprisingly, 273 of the identified substances were found only in females. It is known that behavior and near-field environments can drive exposures, and this work demonstrates the existence of exposure sources uniquely relevant to females.
Project description:Gas chromatography/mass spectrometry (GC/MS) has long been considered one of the premiere analytical tools for small molecule analysis. Recently, a number of GC/MS systems equipped with high-resolution mass analyzers have been introduced. These systems provide analysts with a new dimension of information, accurate mass measurement to the third or fourth decimal place; however, existing data processing tools do not capitalize on this information. Beyond that, GC/MS spectral reference libraries, which have been curated over the last several decades, contain almost exclusively unit resolution MS spectra making integration of accurate mass data dubious. Here we present an informatic approach, called high-resolution filtering (HRF), which bridges this gap. During HRF, high-resolution mass spectra are assigned putative identifications through traditional spectral matching at unit resolution. Once candidate identities have been assigned, all unique combinations of atoms from these candidate precursors are generated and matched to m/z peaks using narrow mass tolerances. The total amount of measured signal that is annotated is used as a metric of plausibility for the presumed identification. Here we demonstrate that the HRF approach is both feasible and highly specific toward correct identifications.
Project description:Gas chromatography-mass spectrometry (GC-MS) platforms are typically run in electron ionization (EI) mode for mass spectral matching and metabolite annotation. With the advent of high resolution mass spectrometry (HRMS), soft ionization techniques such as chemical ionization (CI) may provide additional coverage for compound identification. We evaluated NIST SRM 1950 pooled plasma reference sample using a HRGC-MS instrument [GC-Orbitrap-MS with electron ionization (EI), positive chemical ionization (PCI), and negative CI (NCI) capabilities] for metabolite annotation and quantification to assess the suitability of the platform for routine discovery metabolomics. Using both open source and vendor workflows, we validated the spectral matches with an in-house spectral library (Wake Forest CPM GC-MS spectral and retention time libraries) of EI-MS and CI-MS/MS spectra obtained from chemical standards. We confidently [metabolomics standards initiative (MSI) confidence level 2] identified 263, 93, and 65 metabolites using EI, PCI, and NCI modes, respectively, of which 270 metabolites (64%) were validated using our Wake Forest CPM GC-MS spectral libraries. When compared to published LC-MS-based efforts using the same NIST SRM 1950 plasma sample, there was only 17% overlap between the two platforms. In addition, the metabolomics analysis of community approved standard human plasma demonstrated the ability of EI- and CI-MS modes of analysis using a HRGC-MS platform to enable reproducible and interoperable spectral matching.
Project description:RationaleMetabolomics analyses using gas chromatography/mass spectrometry (GC/MS)-based metabolomics are heavily impeded by the lack of high-resolution mass spectrometers and limited spectral libraries to complement the excellent chromatography that GC platforms offer, a challenge that is being addressed with the implementation of high-resolution (HR) platforms such as 1D-GC/Orbitrap-MS.MethodsWe used serum samples from a non-human primate (NHP), a baboon (Papio hamadryas), with suitable quality controls to quantify the chemical space using an advanced HRMS platform for confident metabolite identification and robust quantification to assess the suitability of the platform for routine clinical metabolomics research. In a complementary approach, we also analyzed the same serum samples using two-dimensional gas chromatography/time-of-flight mass spectrometry (2D-GC/TOF-MS) for metabolite identification and quantification following established standard protocols.ResultsOverall, the 2D-GC/TOF-MS (~5000 peaks per sample) and 1D-GC/Orbitrap-MS (~500 peaks per sample) analyses enabled identification and quantification of a total of 555 annotated metabolites from the NHP serum with a spectral similarity score Rsim ≥ 900 and signal-to-noise (S/N) ratio of >25. A common set of 30 metabolites with HMDB and KEGG IDs was quantified in the serum samples by both platforms where 2D-GC/TOF-MS enabled quantification of a total 384 metabolites (118 HMDB IDs) and 1D-GC/Orbitrap-MS analysis quantification of a total 200 metabolites (47 HMDB IDs). Thus, roughly 30-70% of the peaks remain unidentified or un-annotated across both platforms.ConclusionsOur study provides insights into the benefits and limitations of the use of a higher mass resolution and mass accuracy instrument for untargeted GC/MS-based metabolomics with multi-dimensional chromatography in future studies addressing clinical conditions or exposome studies.
Project description:Genital human papillomavirus (HPV) is the world's most commonly diagnosed sexually transmitted infection, and high-risk HPV types are strongly linked to cervical dysplasia and carcinoma. Puerto Ricans are among the US citizens with higher HPV prevalence and lower screening rates and access to treatment. This bleak statistic was as a motivation to detect biomarkers for early diagnosis of HPV in this population. We collected both urine and cervical swabs from 43 patients attending San Juan Clinics. Cervical swabs were used for genomic DNA extractions and HPV genotyping with the HPV SPF10-LiPA25 kit, and gas chromatography-mass spectrometry (GC-MS) was employed on the urine-derived products for metabolomics analyses. We aimed at discriminating between patients with different HPV categories: HPV negative (HPV-), HPV positive with simultaneous low and high-risk infections (HPV+B) and HPV positive exclusively high-risk (HPV+H). We found that the metabolome of HPV+B is closer to HPV- than to HPV+H supporting evidence that suggests HPV co-infections may be antagonistic due to viral interference leading to a lower propensity for cervical cancer development. In contrast, metabolites of patients with HPV+H were significantly different from those that were HPV-. We identified three urinary metabolites 5-Oxoprolinate, Erythronic acid and N-Acetylaspartic acid that discriminate HPV+H cases from negative controls. These metabolites are known to be involved in a variety of biochemical processes related to energy and metabolism and may likely be biomarkers for HPV high-risk cervical infection. However, further validation should follow using a larger patient cohort and diverse populations to confirm our finding.
Project description:Alterations of cholesterol metabolism are responsible for vasospastic angina and atherosclerosis. To comprehensively evaluate cholesterol metabolism, 18 sterols, including cholesterol, 6 cholesteryl esters (CEs), 3 cholesterol precursors, and 8 hydroxycholesterols (OHCs), were simultaneously analyzed using hybrid solid-phase extraction (SPE) purification coupled to high-temperature gas chromatography-mass spectrometry (HTGC-MS). Methanol-based hybrid SPE increased the selective extraction, and HTGC resulted in a good chromatographic resolution for the separation of lipophilic compounds. The limits of quantification of cholesterol and CEs ranged from 0.2 to 10.0 μg/ml, while OHCs and cholesterol precursors ranged from 0.01 to 0.10 μg/ml. Linearity as the correlation coefficient was higher than 0.99 with the exception of cholesteryl laurate, myristate, oleate, and linoleate (r² > 0.98). The precision (% coefficient of variation) and accuracy (% bias) ranged from 1.1 to 9.8% and from 75.9 to 125.1%, respectively. The overall recoveries of CEs ranged from 26.1 to 64.0%, and the recoveries of other sterols ranged from 83.8 to 129.3%. The cholesterol signatures showed sex differences in patients with vasospastic angina and may associate with 24-reductases. This technique can be useful for making clinical diagnoses and for an increased understanding of the pathophysiology of vasospastic angina.
Project description:Metabolomics uses advanced analytical chemistry methods to analyze metabolites in biological samples. The most intensively studied samples are blood and its liquid components: plasma and serum. Armed with advanced equipment and progressive software solutions, the scientific community has shown that small molecules' roles in living systems are not limited to traditional "building blocks" or "just fuel" for cellular energy. As a result, the conclusions based on studying the metabolome are finding practical reflection in molecular medicine and a better understanding of fundamental biochemical processes in living systems. This review is not a detailed protocol of metabolomic analysis. However, it should support the reader with information about the achievements in the whole process of metabolic exploration of human plasma and serum using mass spectrometry combined with gas chromatography.