Project description:AimsCachexia is a severe complication of cancer that adversely affects the course of the disease and is associated with high rates of mortality. Patients with cancer manifest symptoms, such as fatigue, shortness of breath, and impaired exercise tolerance, which are clinical signs of chronic heart failure. The aim of this study was to evaluate cardiac muscle wasting in cancer individuals.Methods and resultsWe retrospectively analysed 177 individuals who died of cancer, including 58 lung, 60 pancreatic, and 59 gastrointestinal (GI) cancers, and 42 cancer-free controls who died of other, non-cardiovascular reasons. Cancer cachexia (CC) was defined based on clinical and/or pathological diagnosis, body mass index (BMI) <20.0 kg/m2 and/or oedema-free body weight loss of 5.0% during the previous year or less. The pathology reports were analysed for BMI, heart weight (HW), and left and right ventricular wall thicknesses (LVWT and RVWT, respectively). The analysis of clinical data included recording of biochemical parameters and medication data of study patients. CC was detected in 54 (30.5%) subjects. Individuals with CC had a significantly lower HW than non-cachectic subjects (363.1 ± 86.2 vs. 447.0 ± 128.9 g, P < 0.001) and control group (412.9 ± 75.8 g, P < 0.05). BMI correlated with HW in cases with GI cancer (r = 0.44, P < 0.001), lung cancer (r = 0.53, P < 0.0001), and pancreatic cancer (r = 0.39, P < 0.01).ConclusionsBody weight loss in individuals with lung, pancreatic, and GI cancers is accompanied by a decrease in HW. In patients with CC who receive cancer treatment, screening for cardiac muscle wasting may have clinical importance.
Project description:Cancer cachexia is characterized by systemic inflammation, protein degradation, and loss of skeletal muscle. Despite extensive efforts to develop therapeutics, only few effective treatments are available to protect against cancer cachexia. Here, we found that gintonin (GT), a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, protected C2C12 myotubes from tumor necrosis factor α (TNFα)/interferon γ (IFNγ)- induced muscle wasting condition. The activity of GT was found to be dependent on LPAR/Gαi2, as the LPAR antagonist Ki16425 and Gαi2 siRNA abolished the anti-atrophic effects of GT on myotubes. GT suppressed TNFα-induced oxidative stress by reducing reactive oxygen species and suppressing inflammation-related genes, such as interleukin 6 (IL-6) and NADPH oxidase 2 (NOX-2). In addition, GT exhibited anti-atrophy effects in primary normal human skeletal myoblasts. Further, GT protected against Lewis lung carcinoma cell line (LLC1)-induced cancer cachexia in a mouse model. Specifically, GT rescued the lower levels of grip strength, hanging, and cross-sectional area caused by LLC1. Collectively, our findings suggest that GT may be a good therapeutic candidate for protecting against cancer cachexia.
Project description:Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Project description:BackgroundCachexia, a multifactorial syndrome affecting more than 50% of patients with advanced cancer and responsible for ~20% of cancer-associated deaths, is still a poorly understood process without a standard cure available. Skeletal muscle atrophy caused by systemic inflammation is a major clinical feature of cachexia, leading to weight loss, dampening patients' quality of life, and reducing patients' response to anticancer therapy. RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily and a mediator of muscle regeneration, inflammation, and cancer.MethodsBy using murine models consisting in the injection of colon 26 murine adenocarcinoma (C26-ADK) or Lewis lung carcinoma (LLC) cells in BALB/c and C57BL/6 or Ager-/- (RAGE-null) mice, respectively, we investigated the involvement of RAGE signalling in the main features of cancer cachexia, including the inflammatory state. In vitro experiments were performed using myotubes derived from C2C12 myoblasts or primary myoblasts isolated from C57BL/6 wild type and Ager-/- mice treated with the RAGE ligand, S100B (S100 calcium-binding protein B), TNF (tumor necrosis factor)α±IFN (interferon) γ, and tumour cell- or masses-conditioned media to analyse hallmarks of muscle atrophy. Finally, muscles of wild type and Ager-/- mice were injected with TNFα/IFNγ or S100B in a tumour-free environment.ResultsWe demonstrate that RAGE is determinant to activate signalling pathways leading to muscle protein degradation in the presence of proinflammatory cytokines and/or tumour-derived cachexia-inducing factors. We identify the RAGE ligand, S100B, as a novel factor able to induce muscle atrophy per se via a p38 MAPK (p38 mitogen-activated protein kinase)/myogenin axis and STAT3 (signal transducer and activator of transcription 3)-dependent MyoD (myoblast determination protein 1) degradation. Lastly, we found that in cancer conditions, an increase in serum levels of tumour-derived S100B and HMGB1 (high mobility group box 1) occurs leading to chronic activation/overexpression of RAGE, which induces hallmarks of cancer cachexia (i.e. muscle wasting, systemic inflammation, and release of tumour-derived pro-cachectic factors). Absence of RAGE in mice translates into reduced serum levels of cachexia-inducing factors, delayed loss of muscle mass and strength, reduced tumour progression, and increased survival.ConclusionsRAGE is a molecular determinant in inducing the hallmarks of cancer cachexia, and molecular targeting of RAGE might represent a therapeutic strategy to prevent or counteract the cachectic syndrome.
Project description:Cachexia is a multifactorial syndrome characterized by muscle loss that cannot be reversed by conventional nutritional support. To uncover the molecular basis underlying the onset of cancer cachectic muscle wasting and establish an effective intervention against muscle loss, we used a cancer cachectic mouse model and examined the effects of aerobic exercise. Aerobic exercise successfully suppressed muscle atrophy and activated adiponectin signaling. Next, a cellular model for cancer cachectic muscle atrophy using C2C12 myotubes was prepared by treating myotubes with a conditioned medium from a culture of colon-26 cancer cells. Treatment of the atrophic myotubes with recombinant adiponectin was protective against the thinning of cells through the increased production of p-mTOR and suppression of LC3-II. Altogether, these findings suggest that the activation of adiponectin signaling could be part of the molecular mechanisms by which aerobic exercise ameliorates cancer cachexia-induced muscle wasting.
Project description:Pancreatic cancer (PC) is the third leading cause of cancer-related death in the US, and its 5-year survival rate is approximately 10%. The low survival rates largely stem from diagnostic delay and the presence of significant adipose tissue and muscle wasting, commonly referred to as cachexia. Cachexia is present in nearly 80% of PC patients and is a key cause of poor response to treatment and about 20% of death in PC patients. However, there are few clinical interventions proven to be effective against PC-related cachexia. Different cancer types feature distinct secretome profiles and functional characteristics which would lead to cachexia development differently. Therefore, here we discuss affected tissues and potential mechanisms leading to cachexia in PC. We postulate that the most affected tissue during the development of PC-related cachexia is adipose tissue, historically and still thought to be just an inert repository for excess energy in relation to cancer-related cachexia. Adipose tissue loss is considerably greater than muscle loss in quantity and shows a correlation with poor survival in PC patients. Moreover, we suggest that PC mediates adipose atrophy by accelerating adipocyte lipid turnover and fibroblast infiltration.
Project description:BackgroundCancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours.MethodsMCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing.ResultsCHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC.ConclusionsIn this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.
Project description:Cancer cachexia is a metabolic disease involving multiple organs, which is accompanied by the depletion of muscle tissue and is associated with ~20% of cancer‑related deaths. Muscle wasting is a critical factor in cancer cachexia. β‑carotene (BC) has been shown to increase muscle mass and hypertrophy in healthy mice. However, its effects on muscle tissue dysregulation in cancer cachexia have yet to be studied. In the present study, 5‑week‑old male C57BL/6J mice were injected with 1x106 Lewis lung carcinoma (LLC) cells to induce cancer cachexia; then the mice were administered BC (4 or 8 mg/kg) for 22 days to assess its effects on muscle atrophy in the gastrocnemius muscles. The effects of BC on inflammatory cytokines, myogenesis and muscle atrophy were evaluated using C2C12 myotubes treated with LLC‑conditioned media. BC supplementation significantly suppressed tumor growth, inflammatory cytokines, and hepatic gluconeogenesis in the LLC‑induced cancer cachexia mouse model, while also improving muscle weight and grip strength. These effects are considered to be mediated by the PI3K/Akt pathway and through regulation of muscle atrophy. Moreover, BC treatment was associated with the recovery of LLC‑conditioned media‑induced muscle differentiation deficits and muscle atrophy in C2C12 myotubes. These findings indicate BC as a potential novel therapeutic agent for cancer cachexia.
Project description:Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of body weight occurring in about 80% of cancer patients, frequently representing the leading cause of death. Dietary intervention is emerging as a promising therapeutic strategy to counteract cancer-induced wasting. Serine is the second most-consumed amino acid (AA) by cancer cells and has emerged to be strictly necessary to preserve skeletal muscle structure and functionality. Here, we demonstrate that decreased serine availability during tumor progression promotes myotubes diameter reduction in vitro and induces muscle wasting in in vivo mice models. By investigating the metabolic crosstalk between colorectal cancer cells and muscle cells, we found that incubating myotubes with conditioned media from tumor cells relying on exogenous serine consumption triggers pronounced myotubes diameter reduction. Accordingly, culturing myotubes in a serine-free medium induces fibers width reduction and suppresses the activation of the AKT-mTORC1 pathway with consequent impairment in protein synthesis, increased protein degradation, and enhanced expression of the muscle atrophy-related genes Atrogin1 and MuRF1. In addition, serine-starved conditions affect myoblast differentiation and mitochondrial oxidative metabolism, finally inducing oxidative stress in myotubes. Consistently, serine dietary deprivation strongly strengthens cancer-associated weight loss and muscle atrophy in mice models. These findings uncover serine consumption by tumor cells as a previously undisclosed driver in cancer cachexia, opening new routes for possible therapeutic approaches.