Project description:Anaerobic microbial metabolism drives critical functions within global ecosystems, host-microbiota interactions, and industrial applications, yet remains ill-defined. Here we advance a versatile approach to elaborate cellular metabolism in obligate anaerobes using the pathogen Clostridioides difficile, an amino acid and carbohydrate-fermenting Clostridia. High-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy of C. difficile, grown with fermentable 13C substrates, informed dynamic flux balance analysis (dFBA) of the pathogen's genome-scale metabolism. Analyses identified dynamic recruitment of oxidative and supporting reductive pathways, with integration of high-flux amino acid and glycolytic metabolism at alanine's biosynthesis to support efficient energy generation, nitrogen handling and biomass generation. Model predictions informed an approach leveraging the sensitivity of 13C NMR spectroscopy to simultaneously track cellular carbon and nitrogen flow from [U-13C]glucose and [15N]leucine, confirming the formation of [13C,15N]alanine. Findings identify metabolic strategies used by C. difficile to support its rapid colonization and expansion in gut ecosystems.
Project description:Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate.
Project description:MotivationThe recent availability of omics data allows the construction of holistic maps of interactions between numerous role-playing biomolecules. However, these networks are often static, ignoring the dynamic behavior of biological processes. On the other hand, dynamic models are commonly constructed on small scales. Hence, the construction of large-scale dynamic models that can quantitatively predict the time-course cellular behaviors remains a big challenge.ResultsIn this study, a pipeline is proposed for the automatic construction of large-scale dynamic models. The pipeline uses a list of biomolecules and their time-course trajectories in a given phenomenon as input. First, the interaction network of the biomolecules is constructed. To state the underlying molecular events of each interaction, it is translated into a map of biochemical reactions. Next, to define the kinetics of the reactions, an ordinary differential equation (ODE) is generated for each involved biomolecule. Finally, the parameters of the ODE system are estimated by a novel large-scale parameter approximation method. The high performance of the pipeline is demonstrated by modeling the response of a colorectal cancer cell line to different chemotherapy regimens. In conclusion, Systematic Protein Association Dynamic ANalyzer constructs genome-scale dynamic models, filling the gap between large-scale static and small-scale dynamic modeling strategies. This simulation approach allows for holistic quantitative predictions which are critical for the simulation of therapeutic interventions in precision medicine.Availability and implementationDetailed information about the constructed large-scale model of colorectal cancer is available in supplementary data. The SPADAN toolbox source code is also available on GitHub (https://github.com/PooyaBorzou/SPADAN).Supplementary informationSupplementary data are available at Bioinformatics online.
Project description:Colorectal cancer is the third most incidental cancer worldwide, and the response rate of current treatment for colorectal cancer is very low. Genome-scale metabolic models (GEMs) are systems biology platforms, and they had been used to assist researchers in understanding the metabolic alterations in different types of cancer. Here, we reconstructed a generic colorectal cancer GEM by merging 374 personalized GEMs from the Human Pathology Atlas and used it as a platform for systematic investigation of the difference between tumor and normal samples. The reconstructed model revealed the metabolic reprogramming in glutathione as well as the arginine and proline metabolism in response to tumor occurrence. In addition, six genes including ODC1, SMS, SRM, RRM2, SMOX, and SAT1 associated with arginine and proline metabolism were found to be key players in this metabolic alteration. We also investigated these genes in independent colorectal cancer patients and cell lines and found that many of these genes showed elevated level in colorectal cancer and exhibited adverse effect in patients. Therefore, these genes could be promising therapeutic targets for treatment of a specific colon cancer patient group.
Project description:Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint-based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time-dependent changes, albeit using a static model. By performing an in silico knock-out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.
Project description:BackgroundThe genome-scale metabolic model of Saccharomyces cerevisiae, first presented in 2003, was the first genome-scale network reconstruction for a eukaryotic organism. Since then continuous efforts have been made in order to improve and expand the yeast metabolic network.ResultsHere we present iTO977, a comprehensive genome-scale metabolic model that contains more reactions, metabolites and genes than previous models. The model was constructed based on two earlier reconstructions, namely iIN800 and the consensus network, and then improved and expanded using gap-filling methods and by introducing new reactions and pathways based on studies of the literature and databases. The model was shown to perform well both for growth simulations in different media and gene essentiality analysis for single and double knock-outs. Further, the model was used as a scaffold for integrating transcriptomics, and flux data from four different conditions in order to identify transcriptionally controlled reactions, i.e. reactions that change both in flux and transcription between the compared conditions.ConclusionWe present a new yeast model that represents a comprehensive up-to-date collection of knowledge on yeast metabolism. The model was used for simulating the yeast metabolism under four different growth conditions and experimental data from these four conditions was integrated to the model. The model together with experimental data is a useful tool to identify condition-dependent changes of metabolism between different environmental conditions.
Project description:The detachment of epithelial cells, but not cancer cells, causes anoikis due to reduced energy production. Invasive tumor cells generate three splice variants of the metastasis gene osteopontin. The cancer-specific form osteopontin-c supports anchorage-independence through inducing oxidoreductases and upregulating intermediates/enzymes in the hexose monophosphate shunt, glutathione cycle, glycolysis, glycerol phosphate shuttle, and mitochondrial respiratory chain. Osteopontin-c signaling upregulates glutathione (consistent with the induction of the enzyme GPX-4), glutamine and glutamate (which can feed into the tricarboxylic acid cycle). Consecutively, the cellular ATP levels are elevated. The elevated creatine may be synthesized from serine via glycine and also supports the energy metabolism by increasing the formation of ATP. Metabolic probing with N-acetyl-L-cysteine, L-glutamate, or glycerol identified differentially regulated pathway components, with mitochondrial activity being redox dependent and the creatine pathway depending on glutamine. The effects are consistent with a stimulation of the energy metabolism that supports anti-anoikis. Our findings imply a synergism in cancer cells between osteopontin-a, which increases the cellular glucose levels, and osteopontin-c, which utilizes this glucose to generate energy. mRNA profiles of MCF-7 cells transfected with osteopontin-a, osteopontin-c and vector control were generated by RNA-Seq, in triplicate, by Illumina HiSeq.
Project description:Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear. In this work, using genome-scale metabolic modeling, we perform a meta-analysis of time-course transcriptomics, time-course proteomics, and single-cell transcriptomics EMT datasets from cell culture models stimulated with TGF-β. We uncovered temporal metabolic dependencies in glycolysis and glutamine metabolism, and experimentally validated isoform-specific dependency on Enolase3 for cell survival during EMT. We derived a prioritized list of metabolic dependencies based on model predictions, literature mining, and CRISPR-Cas9 essentiality screens. Notably, enolase and triose phosphate isomerase reaction fluxes significantly correlate with survival of lung adenocarcinoma patients. Our study illustrates how integration of heterogeneous datasets using a mechanistic computational model can uncover temporal and cell-state-specific metabolic dependencies.
Project description:Piscirickettsia salmonis is an intracellular bacterial fish pathogen that causes piscirickettsiosis, a disease with highly adverse impact in the Chilean salmon farming industry. The development of effective treatment and control methods for piscireckttsiosis is still a challenge. To meet it the number of studies on P. salmonis has grown in the last couple of years but many aspects of the pathogen's biology are still poorly understood. Studies on its metabolism are scarce and only recently a metabolic model for reference strain LF-89 was developed. We present a new genome-scale model for P. salmonis LF-89 with more than twice as many genes as in the previous model and incorporating specific elements of the fish pathogen metabolism. Comparative analysis with models of different bacterial pathogens revealed a lower flexibility in P. salmonis metabolic network. Through constraint-based analysis, we determined essential metabolites required for its growth and showed that it can benefit from different carbon sources tested experimentally in new defined media. We also built an additional model for strain A1-15972, and together with an analysis of P. salmonis pangenome, we identified metabolic features that differentiate two main species clades. Both models constitute a knowledge-base for P. salmonis metabolism and can be used to guide the efficient culture of the pathogen and the identification of specific drug targets.