Proteomics

Dataset Information

0

Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-FO coupling


ABSTRACT: F1FO-ATP synthases play a central role in cellular metabolism, making the energy of the protonmotive force across a membrane available for a large number of energy-consuming processes. We determined the single-particle cryo-EM structure of active dimeric ATP synthase from mitochondria of Polytomella sp. at 2.7- 2.8 Å resolution. Separation of 13 well-defined rotary substates by 3D classification provides a detailed picture of the molecular motions that accompany c-ring rotation and result in ATP synthesis. Crucially, the F1 head rotates along with the central stalk and c-ring rotor for the first ~30° of each 120° primary rotary step. The joint movement facilitates flexible coupling of the stoichiometrically mismatched F1 and FO subcomplexes. Flexibility is mediated primarily by the interdomain hinge of the conserved OSCP subunit, a well-established target of physiologically important inhibitors. Our maps provide atomic detail of the c-ring/a-subunit interface in the membrane, where protonation and deprotonation of c-ring cGlu111 drives rotary catalysis. An essential histidine residue in the lumenal proton access channel binds a strong non-peptide density assigned to a metal ion that may facilitate c-ring protonation, as its coordination geometry changes with c-ring rotation. We resolve ordered water molecules in the proton access and release channels and at the gating aArg239 that is critical in all rotary ATPases. We identify the previously unknown ASA10 subunit and present complete de novo atomic models of subunits ASA1-10, which make up the two interlinked peripheral stalks that stabilize the Polytomella ATP synthase dimer.

INSTRUMENT(S): LTQ Orbitrap Elite, Q Exactive

ORGANISM(S): Polytomella Parva

SUBMITTER: Julian Langer  

LAB HEAD: Julian Langer

PROVIDER: PXD013530 | Pride | 2019-05-01

REPOSITORIES: Pride

altmetric image

Publications

Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F<sub>1</sub>-F<sub>o</sub> coupling.

Murphy Bonnie J BJ   Klusch Niklas N   Langer Julian J   Mills Deryck J DJ   Yildiz Özkan Ö   Kühlbrandt Werner W  

Science (New York, N.Y.) 20190620 6446


F<sub>1</sub>F<sub>o</sub>-adenosine triphosphate (ATP) synthases make the energy of the proton-motive force available for energy-consuming processes in the cell. We determined the single-particle cryo-electron microscopy structure of active dimeric ATP synthase from mitochondria of <i>Polytomella</i> sp. at a resolution of 2.7 to 2.8 angstroms. Separation of 13 well-defined rotary substates by three-dimensional classification provides a detailed picture of the molecular motions that accompany <  ...[more]

Similar Datasets

2024-01-29 | PXD045079 | Pride
2020-01-13 | PXD016255 | Pride
2015-11-06 | PXD000696 | Pride
2022-02-17 | PXD024500 | Pride
2018-10-18 | PXD009732 | Pride
2017-11-03 | PXD006249 | Pride
2017-11-03 | PXD007155 | Pride
2019-09-25 | PXD015108 | Pride
2018-12-11 | PXD010069 | Pride
2022-01-27 | PXD027447 | Pride