Project description:Gut commensal bacterial strains were cultured with or without added sugars (glucose, sucrose and kestose). The base culture medium without sugar added were modified based on the Yeast Casitone Fatty Acids (YCFA) broth. Samples were analyzed for proteomics using LC-MS/MS.
Project description:Homeostatic interactions between the host and its resident microbiota is important for normal physiological functions and if altered, it could lead to dysbiosis, a change in the structure and function of the microbiota, and as a result to various pathophysiologies. Altered structure in bacterial community is associated with various pathophysiologies, but we are just beginning to understand how these structural changes translate into functional changes. Environmental factors including pathogenic infections can lead to altered interactions between the host and its resident microbiota. We used microarray analysis and a C. elegans model system to gain insights on the mechanisms of functional changes in host-commensal bacteria interaction in the presence or absence of G. duodenalis and identified expression pattern in commensal bacteria that are characteristic of homeostatic and dysbiotic interactions. E. coli HB101 exposed to C. elegans in the presence or absence of G. duodenalis conditioned S-basal complete media for 24 hours were used for RNA extraction and hybridization on Affymetrix microarrays. We collected expression data for E. coli HB101, E. coli HB101 exposed to C. elegans, E. coli HB101 exposed to Giardia conditioned media, and E. coli HB101 exposed to both C. elegans and Giardia conditioned media.
Project description:Strain specific growth of C. jejuni on fucose has been linked to a plasticity region of the chromosome (PR2) and confers a competitive advantage during intestinal colonization. Growth on fucose induces gene expression of PR2 genes, but the regulatory mechanism of the structural genes involved with fucose utilization is unknown. Additionally, the mechanism of fucose dissimilation by C. jejuni is not known since no fucose catabolism homologs are found in the C. jejuni genome. Transcriptional profiles of C. jejuni grown with and without fucose may provide insight in to the genes that are necessary for fucose utilization. The design utilized an available two color microarray slide for the entire transcriptome of Campylobacter jejuni wild type strain NCTC 11168. Each sample represents one competitive hybridization: sham-treated NCTC 11168 v.s. 25mM fucose treated NCTC 11168. There were four biological replicates of each sample with a dye swap introduced in alternating replicates. Samples were independently grown, treated and harvested.
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates Two color experiment, Escherichia coli Sakai (reference), clinical and environmental Escherichia coli strains (testers): At least two replicates including a single dye swap for each reference-tester comparison
Project description:Strain specific growth of C. jejuni on fucose has been linked to a plasticity region of the chromosome (PR2) and confers a competitive advantage during intestinal colonization. Growth on fucose induces gene expression of PR2 genes, but the regulatory mechanism of the structural genes involved with fucose utilization is unknown. A mutant was constructed to examine the role of Cj0480c, a putative IclR-type transcriptional regulator, on PR2 gene expression. Transcriptional profiles of wild-type C. jejuni and the Cj0480c mutant strain grown without fucose may provide insight in to the extent of the fucose regulon and genes that are necessary for fucose utilization. The design utilized an available two color microarray slide for the entire transcriptome of Campylobacter jejuni wild type strain NCTC 11168. Each sample represents one competitive hybridization: wild-type NCTC 11168 v.s. Cj0480c isogenic mutant. There were four biological replicates of each sample with a dye swap introduced in alternating replicates. Samples were independently grown, treated and harvested.
Project description:Escherichia coli is an important human pathogen, among others a cause of severe diarrhea diseases and urinary tract infections. The ability to distinguish different pathogenic E. coli subspecies is crucial for correct treatment of the infection. Characterization and quantification of clinical isolates proteomes can provide details of the organisms’ metabolism and specific virulence factors. We performed a systematic quantitative proteomic analysis on a representative selection of 16 pathogenic and 2 commensal E. coli strains, together with 5 pathogenic Shigella strains. The analysis yielded a dataset of more than 4 thousand proteins, with an average of 2 thousand proteins per strain and 980 proteins common to all strains. Statistical comparison of label-free quantitative levels of 750 proteins, which were quantified in all strains, revealed that levels of a majority of the shared proteins vary substantially among specific strains. Theses quantitative protein profiles clearly distinguished E. coli strains from Shigella and largely separated commensal E. coli strains from intestinal and extraintestinal E. coli isolates.
Project description:PhoP is considered a regulator of virulence despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent both non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Loss of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of >600 genes. In addition to survival at acidic pH and resistance to polymyxin B, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediated these effects by regulating genes that generate a proton motive force. Indeed, bacteria lacking PhoP exhibited a hyper-polarized membrane, and dissipation of the transmembrane electrochemical gradient increased the susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence, and the energized state of the membrane. Comparison of gene expression between wild-type CFT073 and a CFT073 phoP deletion mutant during logarithmic phase growth in LB medium. Three biological replicates were compared from each strain.
Project description:The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and used phenotypic, genomic and proteomic analyses to compare these CF derived strains with each other and with the model strain PAO1.
Project description:Background: Based on 32 Escherichia coli and Shigella genome sequences, we have developed an E. coli pan-genome microarray. Publicly available genomes were annotated in a consistent manor to define all currently known genes potentially present in the species. The chip design was evaluated by hybridization of DNA from two sequenced E. coli strains, K-12 MG1655 (a commensal) and O157:H7 EDL933 (an enterotoxigenic E. coli). A dual channel and single channel analysis approach was compared for the comparative genomic hybridization experiments. Moreover, the microarray was used to characterize four unsequenced probiotic E. coli strains, currently marketed for beneficial effects on the human gut flora. Results: Based on the genomes included in this study, we were able to group together 2,041 genes that were present in all 32 genomes. Furthermore, we predict that the size of the E. coli core genome will approach ~1,560 essential genes, considerably less than previous estimates. Although any individual E. coli genome contains between 4,000 and 5,000 genes, we identified more than twice as many (11,872) distinct gene groups in the total gene pool (âpan-genomeâ) examined for microarray design. Benchmarking of the design based on sequenced control strain samples demonstrated a high sensitivity and relatively low false positive rate. Moreover, the array was highly sufficient to investigate the gene content of apathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Our analysis of four probiotic E. coli strains demonstrate that they share a gene pool very similar to the E. coli K-12 strains but also show significant similarity with enteropathogenic strains. Nonetheless, virulence genes were largely absent. Strain-specific genes found in probiotic E. coli but absent in E. coli K12 were most frequently phage-related genes, transposases and other genes related to mobile DNA, and metabolic enzymes or factors that may offer colonization fitness, which together with their asymptomatic nature may explain their nature. Conclusion: This high-density microarray provides an excellent tool for characterizing either DNA content or gene expression from unknown E. coli strains. Factorial design: Each of four test samples (G 1/2, G3/10, G 4/9, G5) are co-hybridized with two control strain samples (K-12 MG1655 and O157:H7 EDL933). Additional replicate co-hybridizations are included of the two control strain samples (O157:H7 EDL933 vs. K-12 MG1655).
Project description:Pathogenic biofilms have been associated with persistent infections due to high resistance to antimicrobial agents while commensal biofilms often fortify host immune system. Hence, controlling biofilm formation of both pathogenic bacteria and commensal bacteria is important in bacteria-related diseases. We investigated the effect of plant flavonoids on biofilm formation of both enterohemorrhagic Escherichia coli O157:H7 and three commensal E. coli K-12 strains. Phloretin abundant in apples markedly reduced E. coli O157:H7 biofilm formation without affecting the growth of planktonic cells while phloretin did not harm commensal E. coli K-12 biofilms. Also, phloretin reduced E. coli O157:H7 attachment to human colon epithelial cells. Global transcriptome analyses revealed that phloretin repressed toxin genes (hlyE and stx2), autoinducer-2 importer genes (lsrACDBF), a curli gene (csgA), and a dozens of prophage genes in E. coli O157:H7 cells. Electron microscopy confirmed that phroretin reduced the curli production in E. coli O157:H7. In addition, phloretin suppressed TNF-α-induced inflammatory response in vitro using human colonic epithelial cells. Moreover, in the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, phloretin significantly ameliorated colon inflammation and body weight loss. Taken together, our results suggest that phloretin may act as an inhibitor of E. coli O157:H7 biofilm formation as well as anti-inflammatory agent on inflammatory bowel diseases while leaving beneficial commensal E. coli biofilm intact.