ABSTRACT: Root-associated mycobiomes of common temperate plants (Calluna vulgaris and Holcus lanatus) are strongly affected by winter climate conditions.
Project description:The aim of this study was to investigate ecotypic adaptation in Holcus lanatus in plants selected from two widely contrasting habitats, acid bog (pH 3.5) or limestone quarry spoil (pH 7.5), using a transcriptome based analysis approach including sequence analysis of root associated Glomeromycota. Differential gene expression in root and shoot of naturally occurring H. lanatus ecotypes, selected from either habitat and grown in a full factorial reciprocal soil transplant experiment were investigated and ecotype specific SNPs identified.
Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:A double cropping system has been commercially adopted in subtropical regions in southern China, where there is abundant sunshine and heat resources. In this viticulture system, the first growing season normally starts as a summer cropping cycle; then, the vine is pruned and forced by hydrogen cyanamide, resulting in a second crop in January of the next year. Due to climate differences between the two growing seasons, flavonoid content and composition varies greatly. In this study, changes in the transcriptome of flavonoid-associated pathways were compared in berries grown under the double cropping system; in addition, the accumulation of flavonoid compounds was compared. Specific alterations in MYB transcription factors occurred in winter cropping berries around veraison. Then, the winter cropping cycle distinctly induced the flavonoid metabolic pathways while triggering the ripening-associated pathways. Notably, the climate conditions in winter cropping positively affected flavonoid biosynthesis, while the summer season took a major toll on anthocyanin accumulation. In addition, the three classes of flavonoid compounds responded differently to the changing climate; the anthocyanins and flavonols were promoted several fold, whereas no consistent increase was found for flavan-3-ols. Conclusively, flavonoid biosynthesis in grapes grown under a double cropping system showed seasonal or climatic-specific accumulation patterns.
Project description:Perennial plants, like fruit trees grown in temperate regions, are characterized by bud dormancy, a rest state that protects the bud from cold during winter. At the same time, these plants have developed a requirement for winter chill for correct flowering. However, winters are becoming increasingly warm in temperate regions, resulting in dramatic effects on the flowering output and therefore crop yield. A compound that successfully compensates for missing winter chill is hydrogen cyanamide, which has been used to synchronize and advance flowering time in a range of commercially important fruit crops. Hydrogen cyanamide also represents a unique tool for researchers to study controlled endodormancy release. Here, we treated dormant sweet cherry flower buds with hydrogen cyanamide, sampling flower buds at different time points after treatment. RNAseq revealed more than 6,000 hydrogen cyanamide-responsive genes. In accordance with these results, hydrogen cyanamide treatment increased the levels of jasmonoyl-isoleucine (JA-Ile) and the cytokinins trans-zeatin riboside (tZR), dihydrozeatin (DZ) and dihydrozeatin riboside (DZR). Furthermore, hydrogen cyanamide affected the expression of antioxidant- and cell wall loosening-associated transcripts. These results suggest a complex mechanism of action for hydrogen cyanamide-induced endodormancy release, including key roles for JA-Ile, zeatin-type cytokinins and hydrogen cyanide.
Project description:Winter survival and maintenance strategy is crucial in temperate woody plants. Here, we demonstrate novel aspects of the transcriptional regulations adopted by perennial tree species in winter/dormancy, employing a biochemical and whole transcriptome analysis. As expected, genes related to cold hardiness and defense are over-represented. Interestingly, carbohydrate biosynthesis and transport-related genes were very actively expressed in winter/dormancy. Further biochemical analyses verified the dormancy/winter transcription phenotype. Furthermore, dormancy/winter preferential expression of genes involved in the cell wall biosynthesis/modification, circadian rhythm, the indirect transcriptional regulation (RNA metabolism), and chromatin modification/remodeling were identified. Taken together, regulation of gene expression in the winter survival and maintenance may include not only controlled by promoter binding transcription factors but may also be regulated at the post-transcriptional and chromatin levels.