Project description:Genes are up and down regualted in DRG and spinal dorsal cord after peripheral nerve injury WT male adult with sciatic and femoral nerve transection 7 days, RNA was purified from ipilateral or contralateral L4-L6 DRGs or lumbar spinal dorsal cords
Project description:Analysis of gene expression in injured primary DRG with or without camptothecin (CPT) treatment after sciatic nerve crushing may help us identify critical molecular pathways related to axon regeneration. We performed RNA-sequencing of (i) Naive primary DRG tissues without injury, (ii) Primary DRG tissues with vehicle treatment different time-points (18, 24, 36 hours) after sciatic nerve injury, and (iii) Primary DRG tissues with camptothecin treatment different time-points (18, 24, 36 hours) after sciatic nerve injury.
Project description:Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron specific expression profiling of both known and novel Long Non-Coding RNAs (LncRNAs) in rodent DRG following nerve injury. We have identified a large number of novel LncRNAs expressed within rodent DRG, a minority of which were syntenically conserved between mouse and rat and which including both- intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in mouse DRG, and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression following nerve injury, which in mouse is strain dependant. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both naïve and injured DRG.
Project description:To determine overexpression of e5'UTR can enhance injury responsive rp-mRNA operon without injury, we conducted CSDE1-IP sequencing analysis using primary dorsal root ganglion (DRG) neurons infected with LV-control and LV-e5'UTR.
Project description:Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone (MIBP) pain are mostly unknown. Using a localized MM mouse model, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone and found alterations in pathways associated with cell cycle, immune response and neuronal signalling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP.
Project description:Axoplasmic proteomics from sciatic or centrally projecting branches of sciatic DRG identifies unique protein enrichment and signalling pathways, including prior and subsequent to a spinal regeneration-incompetent versus sciatic regeneration-competent axonal injury.
Project description:Axoplasmic proteomics from sciatic or centrally projecting branches of sciatic DRG identifies unique protein enrichment and signalling pathways, including prior and subsequent to a spinal regeneration-incompetent versus sciatic regeneration-competent axonal injury.
Project description:Acute pain after surgery is still managed insufficiently. One major need is, therefore, the identification of new targets specifically relevant for postoperative pain to develop effective and non-addictive analgesics. To this end, we have used the plantar incision model in male mice and DIA-MS to reveal unprecedented insights into proteome dynamics in dorsal root ganglia (DRG) 24 hours after incision.
Project description:Atoh1-Cre; Myc/Myc mice developed choroid plexus papilloma and Atoh1-Cre; Myc/Myc; p53fl/fl mice developed choroid plexus carcinoma. By studying the gene expression profiles of normal choroid plexus, choroid plexus papilloma and choroid plexus carcinoma in mice, we aim to gain a better understanding of the biology of choroid plexus tumors