Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:The skin Microbiome stratifies Patients with CTCL into two subgroups. One subgroup has a balanced microbiome, while the other subgroups has a skin dybiosis with S. aureus outgrowth. This is accompanied by impaired TCR repertoire and poor clinical outcome.
Project description:The skin Microbiome stratifies Patients with CTCL into two subgroups. One subgroup has a balanced microbiome, while the other subgroups has a skin dybiosis with S. aureus outgrow. This is accompanied by impaired TCR repertoir and poor clinical outcome.
Project description:In this study, we conducted an integrated analysis of skin measurements, clinical BSTI surveys, and the skin microbiome of 950 Korean subjects to examine the ideal skin microbiome-biophysical association. By utilizing four skin biophysical parameters, we identified four distinct Korean Skin Cutotypes (KSCs) and categorized the subjects into three aging groups based on their age distribution. We established strong connections between 15 core genera and the four KSC types within the three aging groups, revealing three prominent clusters of the facial skin microbiome. Together with skin microbiome variations, skin tone/elasticity distinguishes aging groups while oiliness/hydration distinguishes individual differences within aging groups. Our study provides prospective reality data for customized skin care based on the microbiome environment of each skin type.
Project description:Squalene makes up 12 % of human skin surface lipids, however little is known about its affects on the host skin microbiome. Here we tested the effect of squalene on genetic regulation of staphylococci, showing that it profoundly affects expression virulence or colonisation determinants, and of iron uptake systems.
Project description:Recent evidence has demonstrated that the gut microbiome has marked effects on neuronal function and behavior. Disturbances to microbial populations within the gut have been linked to myriad models of neuropsychiatric disorders. However, the role of the microbiome in substance use disorders remains understudied. Here we show that male mice with their gut microbiome depleted by nonabsorbable antibiotics (Abx) exhibit decreased formation of morphine conditioned place preference across a range of doses (2.5-15 mg/kg), have decreased locomotor sensitization to morphine, and demonstrate marked changes in gene expression within the nucleus accumbens (NAc) in response to high-dose morphine (20 mg/kg × 7 days). Replacement of short-chain fatty acid (SCFA) metabolites, which are reduced by microbiome knockdown, reversed the behavioral and transcriptional effects of microbiome depletion. This identifies SCFA as the crucial mediators of microbiome-brain communication responsible for the effects on morphine reward caused by microbiome knockdown. These studies add important new behavioral, molecular, and mechanistic insight to the role of gut-brain signaling in substance use disorders
Project description:Abstract: Natural communities of microbes inhabiting amphibian skin, the skin microbiome, are critical to supporting amphibian health and disease resistance. To enable the pro-active health assessment and management of amphibians on Army installations and beyond, we investigated the effects of acute (96h) munitions exposures to Rana pipiens (leopard frog) tadpoles and the associated skin microbiome, integrated with RNAseq-based transcriptomic responses in the tadpole host. Tadpoles were exposed to the legacy munition 2,4,6-trinitrotoluene (TNT), the new insensitive munition (IM) formulation, IMX-101, and the IM constituents nitroguinidine (NQ) and 1-methyl-3-nitroguanidine (MeNQ). The 96h LC50 values and 95% confidence intervals were 2.6 (2.4, 2.8) for ΣTNT and 68.2 (62.9, 73.9) for IMX-101, respectively. The NQ and MeNQ exposures caused no significant impacts on survival in 96h exposures even at maximum exposure levels of 3,560 and 5,285 mg/L, respectively. However, NQ and MeNQ, as well as TNT and IMX-101 exposures, all elicited changes in the tadpole skin microbiome profile, as evidenced by significantly increased relative proportions of the Proteobacteria with increasing exposure concentrations, and significantly decreased alpha-diversity in the NQ exposure. The potential for direct and indirect effects of munitions exposures on the skin microbiome were observed. A direct effect of munitions on microbial flora included the observation of increased relative abundance of the munitions-tolerant, Aeromonadaceae and Pseudomonadaceae, in the NQ exposure. Potential indirect effects on the tadpole skin microbiome resulting from tadpole-host responses to munitions included transcriptional responses indicative of potential changes in skin mucus-layer properties as well as altered production of antimicrobial peptides and innate immune factors. Additional insights into the tadpole host’s transcriptional response to munitions exposures indicated that TNT and IMX-101 exposures each elicited significant enrichment of pathways involved in type-I and type-II xenobiotic metabolism mechanisms where dose-responsive increases in expression were observed. Significant enrichment and increased transcriptional expression of heme and iron binding functions in the TNT exposures was likely connected with known mechanisms of TNT toxicity including hemolytic anemia and methemoglobinemia. The significant enrichment and dose-responsive decrease in transcriptional expression of cell cycle pathways in the IMX-101 exposures was consistent with previous observations in fish, while significant enrichment of immune-related function in response to NQ exposure indicated potential immune suppression at the highest NQ exposure concentration. Finally, the MeNQ exposures elicited significantly decreased transcriptional expression of keratin 16, type I, a gene likely involved in keratinization processes in amphibian skin. Overall, munitions showed the potential to alter tadpole skin microbiome composition and affect transcriptional profiles in the amphibian host, some indicative of potentially impacted host health and immune status, each of which suggest potential implications for munitions exposure on disease susceptibility.
Project description:During acute cutaneous inflammation in diseases such as atopic eczema there are alterations in the microbiome as well as histological and ultrastructural changes to the stratified epidermis, but the precise interaction between the keratinocyte proliferation and differentiation status and the skin microbiome has not been fully explored. We hypothesised that the skin microbiome contributes to regulation of keratinocyte differentiation and can modify antimicrobial responses. Therefore, we examined the effect of exposure to topical commensal or pathogenic Staphylococcal challenge on skin models. To further explore the cell types regulating inhibition specifically targeting SA, single-cell DropSeq analysis of unchallenged naïve, SE challenged, and SA challenged epidermis models was undertaken. Transcriptomic analysis distinguished cells from basal, spinous, and granular layers which could then be interrogated individually in relation to model exposure. In contrast to SE, SA specifically induced a sub-population of spinous cells which highly expressed transcripts related to epidermal inflammation and antimicrobial response such as IL36G, IVL, IL1RN, KLK7, PI3, MMP1, S100A7, S100A8, S100A9, SERPINB1, SERPINB2, SERPINB3, and SLPI. Furthermore, SA, but not SE, specifically induced a basal population which highly expressed IL-1-alpha and IL-1-beta.
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.