Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to evaluate the gene expression of M2-polarized RAW264.7 cells compared with M0 RAW264.7 cells. Methods: RAW264.7 cells were polarized toward M2 using IL-4. M0 RAW264.7 cells were maintained in culture without IL-4. Total RNA of M2 and M0 RAW264.7 cells was extracted. RAW264.7 cells RNA profiles were generated by deep sequencing for two groups (M2 versus M0 RAW264.7 cells) with three samples each. Results: There were significant differences between M2 and M0 RAW264.7 cells. Conclusions: Polarization of RAW264.7 cells from M0 to M2 induces various changes at the transcription level.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to evaluate the gene expression of M1-polarized RAW264.7 cells compared with M0 RAW264.7 cells. Methods: RAW264.7 cells were polarized toward M1 using LPS and IFN-γ. M0 RAW264.7 cells were maintained in culture without LPS and IFN-γ. Total RNA of M1 and M0 RAW264.7 cells was extracted. RAW264.7 cells RNA profiles were generated by deep sequencing for two groups (M1 versus M0 RAW264.7 cells) with three samples each. Results: There were significant differences between M1 and M0 RAW264.7 cells. Conclusions: Polarization of RAW264.7 cells from M0 to M1 induces various changes at the transcription level.
Project description:Metastasis is a major problem of gastric cancer. In this study, small extracellular vesicle (sEV)-derived miRNAs were sequenced to screen biomarkers for GC’s organo-tropic metastasis. Plasma from 40 treatment-naïve gastric cancer patients including 10 no metastasis (M0) and 30 distant metastasis (M1) were assessed by sEV-miRNA-sequencing. sEV miRNAs with diverse expression profiles across different metastatic patterns were combined into sigantures to characterize and predict gastric cancer metastasis.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:To gain insight into the microRNA expression profile of small extracellular vesicle derived from different cell types and to verify their mechanism, we utilized the miRNA sequencing technology to analyze the miRNA profiles of different human cell derived small extracellular vesicle
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.