Project description:LINC01235 plays a crucial role in HER2-positive breast cancer by regulating global histone modifications (H3K27ac, H3K9ac, H3K36me3) and promoting H2A.Z expression in its regulatory regions. It enhances the accessibility of DNA licensing factors at their promoter regions, leading to increased DNA replication and chromosomal instability. These mechanisms contribute to clonal expansion and resistance to anti-HER2 therapies, highlighting LINC01235 as a potential therapeutic target.
Project description:PIWI-interacting RNAs (piRNAs) mediate transposable element (TE) silencing at the transcriptional or post-transcriptional level in animal gonads. In the Drosophila ovary, Piwiâ??piRNA complexes (Piwiâ??piRISCs) repress TE transcription by modifying the chromatin state, such as H3K9me3 marks. Here, we demonstrate that Piwi physically interacts with linker histone H1. Depletion of Piwi decreases H1 density on target loci, leading to TE derepression. Loss of H1 results in gain of chromatin accessibility at target loci without affecting H3K9me3 and heterochromatin protein 1a (HP1a) density at the same loci. Piwi-mediated TE silencing also requires HP1a by regulating chromatin accessibility through its association with target loci. Thus, Piwiâ??piRISCs require both H1 and HP1a to repress TEs, and the silencing is correlated with the state of chromatin formation rather than H3K9me3 marks. These findings suggest that Piwiâ??piRISCs regulate the interaction of chromatin components with target loci to maintain silencing of the TE state through the modulation of chromatin accessibility. RNA levels, H1 and H3K9me3 occupancy, chromatin accessibility, and Piwi-associated small RNA levels in ovarian somatic cells (OSC) depleted of piRNA pathway components and H1.
Project description:Purpose:To identify genes involved in the DEK regulating chromatin accessibility of hematopoietic stem cells (HSC) in mice, we performed ATAC-Sequence of HSC freshly sorted from mice.
Project description:The transcription factor CTCF appears indispensable in defining topologically associated domain boundaries and maintaining chromatin loop structures within these domains, supported by numerous functional studies. However, acute depletion of CTCF globally reduces chromatin interactions but does not significantly alter transcription. Here we systematically integrated multi-omics data including ATAC-seq, RNA-seq, WGBS, Hi-C, Cut&Run, CRISPR-Cas9 survival dropout screening, time-solved deep proteomic and phosphoproteomic analyses in cells carrying auxin-induced degron at endogenous CTCF locus. Acute CTCF protein degradation markedly rewired genome-wide chromatin accessibility. Increased accessible chromatin regions were largely located adjacent to CTCF-binding sites at promoter regions and insulator sites and were associated with enhanced transcription of nearby genes. In addition, we used CTCF-associated multi-omics data to establish a combinatorial data analysis pipeline to discover CTCF co-regulatory partners in regulating downstream gene expression. We successfully identified 40 candidates, including multiple established partners (i.e., MYC) supported by all layers of evidence. Interestingly, many CTCF co-regulators (e.g., YY1, ZBTB7A) that have evident alterations of respective downstream gene expression do not show changes at their expression levels across the multi-omics measurements upon acute CTCF loss, highlighting the strength of our system to discover hidden co-regulatory partners associated with CTCF-mediated transcription. This study highlights CTCF loss rewires genome-wide chromatin accessibility, which plays a critical role in transcriptional regulation
Project description:Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we show using selective isolation of chromatin-associated proteins that the protein network around chromatin-bound GR is affected by SUMOylation, with several nuclear receptor coregulators and chromatin modifiers being more avidly associated with SUMOylation-deficient than SUMOylation competent GR. This difference is reflected in our chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in opening chromatin at glucocorticoid-regulated enhancers and inducing expression of their target loci. Our results thus show that SUMOylation determines GR specificity by regulating the chromatin protein network and accessibility at GR-driven enhancers. We speculate that a similar mechanism is utilized by many other SUMOylated TFs.
Project description:Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign. There are 20 samples in total. These consist of 10 FAIRE-seq samples, specifically 6 haploid samples, S. cerevisiae strain UWOPS05_217_3 replicates 1 and 2, S. cerevisiae strain DBVPG1373 replicates 1 and 2, and S. paradoxus strain CBS432 replicates 1 and 2. There are also 4 diploid hybrid samples, hybrid between S. cerevisiae strain UWOPS05_217_3 and S. paradoxus strain CBS432 replicates 1 and 2, and the hybrid between S. cerevisiae strain DBVPG1373 and S. paradoxus strain CBS432 replicates 1 and 2. There are also RNA-seq samples for each of these 10 samples.