Project description:Piscine reovirus (PRV) is a causative agent of heart and skeletal muscle inflammation in Atlantic salmon, which is propagated in red blood cells (RBC). Here, transcriptome analyses of PRV infected erythrocytes showed strong and complex innate antiviral responses.
Project description:Early transcriptome responses to purified Piscine orthoreovirus-1 in Atlantic salmon (Salmo salar L.) red blood cells ex vivo, compared to salmonid kidney cell lines
Project description:The present work characterizes the response of co-habited Atlantic (Salmo salar), chum (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha) to sea lice infections. Atlantic and pink salmon anterior kidney samples were profiled at three time points over nine days after the start of an experimental infection. Chum salmon anterior kidney was profiled at day six post infection only. All three species were also profiled at six days post exposure for skin responses of the pectoral fin, typically associated with lice infection.
Project description:We investigate the effect of a functional feed for immunostimulation (peptidoglycan extract from bacterial cell wall with nucleotide formulation) on L. salmonis infection levels on Atlantic salmon Salmo salar, and on host and parasite gene expression profiles. Atlantic salmon smolts (~95 g) were fed a control diet, or a low or high dose immunostimulant diet, and then exposed to L. salmonis copepodids in three subsequent exposures. The transcriptome of salmon lice late in the infection attached to either the low dose diet or control diet hosts were compared using a 38K oligonucleotide microarray.
Project description:Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In addition, the microbial temporal proteome dynamics during 9 days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment.
Project description:Atlantic salmon (Salmo salar L.) is an environmentally and economically important organism and its gene content is reasonably well characterized. From a transcriptional standpoint, it is important to characterize the normal changes in gene expression over the course of early development, from fertilization through to the parr stage.S. salar samples were taken at 17 time points from 2 to 89 days post fertilization. Total RNA was extracted and cRNA was synthesized and hybridized to a new 44K oligo salmonid microarray platform. Quantified results were subjected to preliminary data analysis and submitted to NCBI’s Gene Expression Omnibus. Throughout the entire period of development, several thousand genes were found to be differentially regulated. This work represents the trancriptional characterization of a very large geneset that will be extremely valuable in further examination of the transcriptional changes in Atlantic salmon during the first few months of development. The expression profiles can help to annotate salmon genes in addition to being used as references against any number of experimental variables that developing salmonids might be subjected to.