Project description:RNA-seq of SH-SY5Y NB cells stably transduced with shETV5 compared to parental cells, cell line samples and samples of xenografted tumors
Project description:The antiapoptotic Bcl-2 family member Bfl-1 is upregulated in many human tumors in which NF-kB is implicated, and contributes significantly to tumor cell survival and chemoresistance. We previously found that NF-kB induces transcription of bfl-1, and that the Bfl-1 protein is also regulated by the ubiquitin-proteasome. However little is known of the role that dysregulation of Bfl-1 turnover plays in cancer. We found that ubiquitination-resistant mutants of Bfl-1 display increased stability and greatly accelerate tumor formation in a mouse model of leukemia/lymphoma. Gene expression profiling revealed that tyrosine kinase Lck is highly upregulated and activated in these tumors compared to the parental cells, as were several genes in the RANK signaling pathway, and leads to activation of the IKK, Akt and Erk signaling pathways, which are key mediators in cancer. Tumor assays with cells coexpressing constitutively active Lck with Bfl-1, or with tumor-derived cells following shRNA-mediated Lck knockdown, unveiled functional cooperation between Bfl-1 and Lck in leukemia/lymphomagenesis. These data demonstrate that ubiquitination is a critical mechanism for regulating Bfl-1 function, and suggest that mutations in bfl-1 or in the signaling pathways that control its ubiquitination may predispose to cancer. Additionally since bfl-1 is upregulated in many human hematopoietic tumors, these data suggest that strategies to promote Bfl-1 ubiquitination may improve therapy in drug-resistant tumors. FL5.12 pro-B cells were stably transfected with Bfl-1DC and p53DD (Parental - P) and injected i.v. into nude mice. The spleens were harvested from three independent mice that developed leukemia/lymphoma (T1, T2, and T3). To identify the changes in gene expression that occurred during tumorigenesis, RNA was isolated from the parental cell line (P) and from three independent splenic tumors (T) and hybridized to Affymetrix Mouse Genome 430A_2.0 arrays. The analysis was performed in duplicate.
Project description:The antiapoptotic Bcl-2 family member Bfl-1 is upregulated in many human tumors in which NF-kB is implicated, and contributes significantly to tumor cell survival and chemoresistance. We previously found that NF-kB induces transcription of bfl-1, and that the Bfl-1 protein is also regulated by the ubiquitin-proteasome. However little is known of the role that dysregulation of Bfl-1 turnover plays in cancer. We found that ubiquitination-resistant mutants of Bfl-1 display increased stability and greatly accelerate tumor formation in a mouse model of leukemia/lymphoma. Gene expression profiling revealed that tyrosine kinase Lck is highly upregulated and activated in these tumors compared to the parental cells, as were several genes in the RANK signaling pathway, and leads to activation of the IKK, Akt and Erk signaling pathways, which are key mediators in cancer. Tumor assays with cells coexpressing constitutively active Lck with Bfl-1, or with tumor-derived cells following shRNA-mediated Lck knockdown, unveiled functional cooperation between Bfl-1 and Lck in leukemia/lymphomagenesis. These data demonstrate that ubiquitination is a critical mechanism for regulating Bfl-1 function, and suggest that mutations in bfl-1 or in the signaling pathways that control its ubiquitination may predispose to cancer. Additionally since bfl-1 is upregulated in many human hematopoietic tumors, these data suggest that strategies to promote Bfl-1 ubiquitination may improve therapy in drug-resistant tumors.
Project description:Transcription profiling by array of U-2987-MG glioma derived cell line to investigate the effect of Snail1 overexpression compared to control
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)