Project description:We investigate photorespiration pathways in the chemoautotroph Cupriavidus necator H16 when growing autotropically on hydrogen and carbon dioxide via the Calvin Cycle. We demonstrate an upregulation of the glycerate pathway under photorespiration (ambient carbon dioxide) conditions
Project description:These data belong to a metabolic engineering project that introduces the reductive glycine pathway for formate assimilation in Cupriavidus necator. As part of this project we performed short-term evolution of the bacterium Cupriavidus necator H16 to grow on glycine as sole carbon and energy source. Some mutations in a putiative glycine transporting systems facilitated growth, and we performed transcriptomics on the evolved strain growing on glycine. Analysis of these transcriptomic data lead us to the discovery of a glycine oxidase (DadA6), which we experimentally demonstrated to play a key role in the glycine assimilation pathay in C. necator.
Project description:The transcriptome of C. necator H16 grown autotrophically with H2:CO2:O2 in the presence of piezocatalytic ZnO nanosheets under intense tilting agitation at 200 rpm