Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P4 infecting PAK strain of P. aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:In the face of escalating challenges posed by infections with multiple drug-resistant (MDR) pathogens, the use of bacteriophages in therapeutic applications has emerged as a critically relevant and often sole alternative to traditional antibiotics. The most promising results of phage therapy have been demonstrated in the case of Staphylococcus aureus. It should be noted that the S. aureus population is characterized by a high degree of clonality. Strains belonging to sequence type 239 are among the main epidemic strains of methicillin-resistant S. aureus, identified worldwide. Many ST239 strains are characterized by MDR and resistance to virulent bacteriophages, and can become a serious problem in medicine. The purpose of this study was to investigate the resistance of clinical strains of S. aureus SA191REV of ST239 to bacteriophages of the Herelleviridae family using systems biology methods, starting from microbiological data on the interaction of strains with bacteriophages to transcriptomic and proteomic analysis. As results, the main changes in the cells of the resistant strain caused by phage infection are related to the energy metabolism in the cell. Significant changes were found in the functioning of the tricarboxylic acid cycle, glycolytic process, and glucose metabolic process. The most likely mechanism of resistance in the case of SA191REV strains is the premature death of infected cells due to the type I toxin-antitoxin system, as well as the hyperexpression of the lrgA and lrgB genes.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence. This is a Listeria monocytogenes pan-genome tilling array designed using PanArray algorithm. 9 experimental strains (F2-569, M1-002, F2-208, J2-071, J1-208, W1-111, W1-110, F2-524, F2-501) vs reference (EGD-e) strain.
Project description:Full title: Probing the pan genome of a foodborne bacterial pathogen Listeria monocytogenes: Implications for its niche adaptation, pathogenesis, and evolution Listeria monocytogenes is a foodborne bacterial pathogen well known for adaptability to diverse environmental and host niches, and a high fatality rate among infected, immuno-compromised individuals. Three genetic lineages have been identified within this species. Strains of genetic lineages I and II account for more than ninety percent of foodborne disease outbreaks worldwide, whereas strains from genetic lineage III are rarely implicated in human infectious for unknown, yet intriguing, reasons. Here we have probed the genomic diversity of 26 L. monocytogenes strains using both whole-genome sequences and a novel 385,000 probe pan-genome microarray, fully tiling the genomes of 20 representative strains. Using these methods to identify genes highly conserved in lineages I and II but rare in lineage III, we have identified 86 genes and 8 small RNAs that play roles in bacterial stress resistance, pathogenicity, and niche, potentially explaining the predominance of L. monocytogenes lineages I and II in foodborne disease outbreaks. Extending gene content analysis to all lineages revealed a L. monocytogenes core genome of approximately 2,350 genes (80% of each individual genome) and a pan-genomic reservoir of >4,000 unique genes. Combined gene content data from both sequences and arrays was used to reconstruct an informative phylogeny for the L. monocytogenes species that confirms three distinct lineages and describes the relationship of 9 new lineage III genomes. Comparative analysis of 18 fully sequenced L. monocytogenes lineage I and II genomes shows a high level of genomic conservation and synteny, indicative of a closed pan-genome, with moderate domain shuffling and sequence drift associated with bacteriophages is present in all lineages. In contrast with lineages I and II, notable genomic diversity and characteristics of an open pan-genome were observed in the lineage III genomes, including many strain-specific genes and a more complex conservation pattern. This indicates that the L. monocytogenes pan-genome has not yet been fully sampled by genome sequencing, and additional sequencing of lineage III genomes is necessary to survey the full diversity of this intriguing species and reveal its mechanisms for adaptability and virulence.