Project description:Microgravity leads to a 10-15% loss of bone mass in astronauts during space flight. Osteoclast is the multinucleated bone resorbing cell. In this study, we used NASA developed ground based Rotary Wall Vessel Bioreactor (RWV), Rotary Cell Culture System (RCCS) to simulate microgravity (μXg) conditions and demonstrated a significant increase (2-fold) in osteoclastogenesis compared to ground based control (Xg) mouse bone marrow cultures. We further determined the gene expression profiling of RAW 264.7 osteoclast progenitor cells in microgravity by agilent microarray analysis. Gene expression pattern was functional group clustered by transcriptome analysis using gene ontology tree machine (GOTM) for cell proliferation/survival, differentiation and function. We confirm the microgravity modulated gene expression critical for osteoclast differentiation by real-time RT-PCR and Western blot analysis in murine bone marrow cultures. We identify transcription factors such as c-Jun, c-Fos, PU-1 critical for osteoclast differentiation is up-regulated in microgravity conditions. In addition, microgravity resulted in 2.3 and 2.0-fold increase in the level of cathepsin K and MMP-9 matrix metalloproteinase expression in preosteoclast cells involved in the bone resorption process respectively. We also demonstrate a significant increase in the expression levels of M-CSF receptor, c-Fms and PLCγ2 and S100A8 molecules that play an important role in Ca2+ signaling essential for osteoclast function. Further, microgravity stimulated preosteoclast cells showed elevated cytosolic Ca2+ levels compared to ground based control cells. Thus, microgravity regulated gene expression profiling in preosteoclast cells provide new insights in to molecular mechanisms and therapeutic targets of osteoclast differentiation/activation responsible for bone loss and fracture risk in astronauts during space flight mission. Microgravity associated with space flight is a challenge for normal bone homeostasis. Astronauts experience 10-15% bone loss during a space flight mission. We aimed to determine the effect of simulated microgravity on osteoclast preosteoclasts cells. RAW264.7 cells (1.5 x 106 /ml) were loaded in RCCS with DMEM containing 10% FBS for 24 h. The cells were stimulated with RANKL (80ng/ml) for 24 h to obtain preosteoclasts in parallel with ground based control cells. Total RNA was isolated using RNAzol reagent (Biotecx Labs, Houston, TX) from control (Xg) and microgravity (μXg) subjected cells and hybridized with Agilent whole mouse genome 4x44K array system. Slides were washed and scanned on an Agilent G2565 microarray scanner. Data obtained were analyzed with Agilent feature extraction and GeneSpring GX v7.3.1 software packages (Genus biosystem, Inc. Northbrook, IL, USA).
Project description:Microgravity leads to a 10-15% loss of bone mass in astronauts during space flight. Osteoclast is the multinucleated bone resorbing cell. In this study, we used NASA developed ground based Rotary Wall Vessel Bioreactor (RWV), Rotary Cell Culture System (RCCS) to simulate microgravity (μXg) conditions and demonstrated a significant increase (2-fold) in osteoclastogenesis compared to ground based control (Xg) mouse bone marrow cultures. We further determined the gene expression profiling of RAW 264.7 osteoclast progenitor cells in microgravity by agilent microarray analysis. Gene expression pattern was functional group clustered by transcriptome analysis using gene ontology tree machine (GOTM) for cell proliferation/survival, differentiation and function. We confirm the microgravity modulated gene expression critical for osteoclast differentiation by real-time RT-PCR and Western blot analysis in murine bone marrow cultures. We identify transcription factors such as c-Jun, c-Fos, PU-1 critical for osteoclast differentiation is up-regulated in microgravity conditions. In addition, microgravity resulted in 2.3 and 2.0-fold increase in the level of cathepsin K and MMP-9 matrix metalloproteinase expression in preosteoclast cells involved in the bone resorption process respectively. We also demonstrate a significant increase in the expression levels of M-CSF receptor, c-Fms and PLCγ2 and S100A8 molecules that play an important role in Ca2+ signaling essential for osteoclast function. Further, microgravity stimulated preosteoclast cells showed elevated cytosolic Ca2+ levels compared to ground based control cells. Thus, microgravity regulated gene expression profiling in preosteoclast cells provide new insights in to molecular mechanisms and therapeutic targets of osteoclast differentiation/activation responsible for bone loss and fracture risk in astronauts during space flight mission.
Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:We used microarrays to detail the gene expression profile during WAT -beige transition by treatment of beta adrenergic receptor agonist .
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.