Project description:Iodine treatments specifically regulated the expression of several genes in shoot and root tissues, mostly involved in the plant defence response, suggesting the protective role of iodine against both biotic and abiotic stresses.
Project description:The aim of this project is to deeply map the proteome of mitochondria from the model plant Arabidopsis thaliana. For this purpose, mitochondria were isolated from Arabidopsis cell cultures, their proteins extracted and processed using SP3 digestion. To achieve high sequence coverage, the proteins were digested with a total of six different proteases and measured using sensitive timsTOF Pro hardware and TIMS fractionation.
Project description:Innate immune responses of plant cells confer the first line of defence against pathogens. Signals generated by activated receptors are integrated inside the cell and converge on transcriptional programmes in the nucleus. In Arabidopsis, the CAMTA family of transcription factors plays a pivotal function in immunity. CAMTA binding motifs are highly enriched in the genes quickly induced during ETI and PTI. Using RNA-seq, we investigated the role of CAMTA TFs during the early ETI and PTI transcriptional responses.
Project description:To explore the role and target of chloroplast proteases under heat stress, thylakoid membranes were isolated from wild-type and mutant chloroplast thylakoid membrane-localized proteases after heat stress and subjected to comparative quantification by LC-MS/MS analysis using the spectral counting method.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array.
Project description:Arabidopsis thaliana exhibits differential susceptibility to the fungal pathogen Botrytis cinerea depending on the time of day that infection occurs. We hypothesised that this is driven by teh circadian clock and that differences in the amplitude or speed of the plant defence response will underlie the difference in susceptiblity. A major component of the defence response is transcriptional reprogramming, hence we investigated whether the transcriptional response to B. cinerea infection differs following inoculation at subjective dawn or night (the points of greatest difference in susceptiblity) under constant light conditions.