Project description:Candida auris has been globally recognized as a multidrug-resistant human fungal pathogen that contributes for the worldwide occurrence of nosocomial outbreaks. It has been reported that C. auris was able to avoid neutrophil attack, suggestive of an impaired innate immune response. Whether C. auris evades the innate immune recognition of BMDM (bone marrow derived macrophage) remains poorly understood, and as for well-known Candida species -C. albicans, it can trigger immune response. To determine whether occurs difference between immune response stimulated by C. auris or C. albicans, we performed mRNA-seq of BMDM stimulated by C. auris or C. albicans.
Project description:Mouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource. We profiled gene expression in pig BMDM from outbred animals (Large-White Landrace F1cross) responding to LPS using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely-resembled human than mouse macrophages, and included genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20) and the vitamin D3-converting enzyme Cyp27B1. Conversely, pig BMDM, like human macrophages, did not induce genes involved in arginine metabolism, nor did they produce nitric oxide. The data establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control. RNA for gene expression analysis was collected at time points 0, 2, 7 and 24 hours post LPS stimulation (100ng/ml). Each time point included BMDM from the same three pigs and each cell culture was replicated. The replicate of the pig3_24h was not suitable for RNA analysis. Therefore, a total of 23 microarrays were hybridized.
Project description:Comparative analysis of gene expression in bone marrow-derived macrophages (BMDM) from trsp knockout mice (Trspfl/fl-LysM-Cre+/-) and Control (Trspfl/fl-LysM-Cre-/-) mice. Selenium, a micronutrient whose deficiency in the diet causes immune dysfunction and inflammatory disorders, exerts its physiological effects partly in the form of selenium-containing proteins (selenoproteins). Incorporation of selenium into the amino acid selenocysteine (Sec), and subsequently into selenoproteins, is mediated by Sec tRNA[Ser]Sec. To identify macrophage-specific selenoprotein function, we generated mice with the Sec tRNA[Ser]Sec gene specifically deleted in myeloid cells. These mutant mice were devoid of the selenoproteome in macrophages, yet exhibited largely normal inflammatory responses. However, selenoprotein deficiency led to aberrant expression of extracellular matrix-related genes, and diminished migration of macrophages in a protein gel matrix. Therefore, selenium status may affect immune defense and tissue homeostasis through its effect on selenoprotein expression and the trafficking of tissue macrophages. We have generated mice in which we have selectively removed the selenocysteine tRNA gene (trsp) in macrophages under the control of LysM-Cre promoter. Microarray analysis was performed on RNA samples taken from bone marrow-derived macrophages in knockout and control mice. 1. Control unstimulated 2. Knockout unstimulated 3. Control lipopolysaccharide (LPS) stimulated (4h) 4. Knockout LPS stimulated (4h). Three replicates for each condition. Thus, a total of 12 samples.
Project description:Mouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource. We profiled gene expression in pig BMDM from outbred animals (Large-White Landrace F1cross) responding to LPS using Affymetrix microarrays. The temporal cascade of inducible and repressible genes more closely-resembled human than mouse macrophages, and included genes involved in tryptophan metabolism (IDO, KYN), lymphoattractant chemokines (CCL20) and the vitamin D3-converting enzyme Cyp27B1. Conversely, pig BMDM, like human macrophages, did not induce genes involved in arginine metabolism, nor did they produce nitric oxide. The data establish pig BMDM as an alternative tractable model for the study of macrophage transcriptional control.
Project description:The nuclear orphan receptor Nur77 (NR4A1, TR3, or NGFI-B) has been shown to exhibit an anti-inflammatory function in macrophages. To further elucidate the role of Nur77 in macrophage physiology, we compared the transcriptome of bone marrow-derived macrophages (BMM) from wild-type (WT) and Nur77-knockout (KO) mice both before and after stimulation with IL4 or LPS. Comparison of gene expression in bone marrow-derived macrophages, isolated from 3 wild-type (control) and 3 Nur77-/- mice (case), left untreated or stimulated in triplicate for 8 hours with LPS or IL-4
Project description:We cultured bone marrow derived dendritic cells from WT and CD11c KO mice. Then, a group of bone marrow dendritic cells were stimulated with LPS overnight. We obtained bone marrow derived dendritic cells with or without LPS stimulation and analyzed proteomics profiles.
Project description:Bone marrow derived macrophages (BMDM) generated from c57bl/6j mice bone marrow cells were stimulated for 18 h with 12 microgram/ml adiponectin, RNA from non-stimulated or 18 h adiponectin-stimulated BMDM subjected to a agilent microarray analysis
Project description:We investigated the molecular mechanisms by which ERRM-NM-1 negatively regulates TLR-signaling pathways. To examine this, we performed global gene expression analysis of ERRM-NM-1+/+ and ERRM-NM-1-/- BMDMs after LPS stimulation. Microarray analysis revealed that several genes encoding various TLR-negative regulators were downregulated in LPS-stimulated ERRM-NM-1-/- BMDMs, when compared with ERRM-NM-1+/+ BMDMs Bone marrow-derived macrophages were isolated in 6~8 week old male C57BL6 mice and then divided into 4 groups 1) Solvent control-treated ERRM-NM-1+/+ BMDM 2) LPS-treated ERRM-NM-1+/+ BMDM 3) Solvent control-treated ERRM-NM-1-/- BMDM 4) LPS-treated ERRM-NM-1-/- BMDM
Project description:To get insight into TRIM33 functions, TRIM33 ChIP-seq was carried out in murine macrophage cell line (RAW) and in bone marrow-derived macrophages (BMDM). The results showed that, in addition to its role in hematopoietic differentiation, TRIM33 may modulate PU.1 transcriptional activity during macrophage development and/or activation.To characterize the role of TRIM33 in macrophages, we bred TRIM33fl/fl mice with Lyz-Cre mice where the Cre recombinase gene is under the regulatory sequences of the Lyz gene that is expressed only in mature myeloid cells. Bone marrow cells from LyzCre/Trim33+/+ mice and LyzCre/Trim33flox/flox mice were differentiated in macrophages and treated during 0h, 4h, 12h and 24h with LPS. Using ChIP-seq, we provide a link between TRIM33 binding and H3K4me3 spreading on inflammatory genes in macrophages. Chromatin immunoprecipitations of TRIM33 and H3K4Me3 followed by multiparallel sequencing performed in murine bone marrow-derived macrophages (BMDM).