Project description:Leaf angle is mainly determined by the lamina joint (LJ), and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation, and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle, and the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms how the cytological dynamics of LJ determined the leaf erectness, and served as a valuable resource to remodel rice architecture for high yield via controlling population density.
Project description:We identified a key regulator of the rice leaf angle and plant architecture, OsWRKY36, from a rice oswrky mutant library. OsWRKY36 is highly expressed in the leaf lamina joint and promotes cell growth and expansion in adaxial parenchyma cells, leading to a greater leaf angle.
Project description:Leaf angle is mainly determined by the lamina joint (LJ), and contributes to ideal crop architecture for high yield. Here, we dissected five successive stages with distinct cytological features of LJs spanning organogenesis to leaf angle formation, and obtained the underlying stage-specific mRNAs and small RNAs, which well explained the cytological dynamics during LJ organogenesis and leaf angle plasticity. Combining the gene coexpression correlation with high-throughput promoter analysis, we identified a set of transcription factors determining the stage- and/or cytological structure-specific profiles. The functional studies of these TFs demonstrated that cytological dynamics determined leaf angle, and the knockout rice of these TFs with erect leaves significantly enhanced yield by maintaining the proper tiller number under dense planting. This work revealed the high-resolution mechanisms how the cytological dynamics of LJ determined the leaf erectness, and served as a valuable resource to remodel rice architecture for high yield via controlling population density.
Project description:The leaf lamina joint joins the rice leaf blade and sheath, contributing significantly to the leaf angle trait. A more erect leaf facilitates the penetration of sunlight, enhancing photosynthetic efficiency and occupying less space in dense planting. Genetic screening found a mutant increased leaf angle1, ila1 from rice T-DNA insertional mutants library. We used microarrays to detail the transcriptional profile changes in the mutant ila1 lamina joint.
2012-05-01 | GSE33361 | GEO
Project description:BSR-seq data of leaf shape of watermelon
Project description:The angle of rice leaf inclination is an important agronomic trait and closely related to the yield and architecture of crops. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1, was identified . Phenotypic analysis confirmed the exaggerated leaf angels of lc1 due to the stimulated cell elongation at the collar.In this series, we compare the transcriptome of zhonghua11 and lc1 collar.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.