Project description:S. aureus ATCC 25923 is performance standard for antimicrobial susceptibility testing. S. aureus ATCC 33591 showed resistance against erytrhromycin, penicillin, and streptomycin. We used microarray to compare RNA expression between sensitive and resistant strain of S. aureus as a preliminary research for MRSA inhibition.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health. Rather than depend on creating new antibiotics (to which bacteria will eventually become resistant), we are employing antibiotic adjuvants that potentiate existing antibiotics. Based on our previous work, loratadine, the FDA-approvide antihistamine, effectively potentiates cell-wall active antibiotics in multiple strains of MRSA. Furthermore, loratadine and oxacillin helped disrupt preformed biofilms and stop them from initially forming in vitro. To gain biological insight into how this potentiation and biofilm inhibition occurs, we used RNA-seq on treated MRSA 43300 cultures to examine antibiotic adjuvant affects transcritome-wide.
Project description:S. aureus ATCC 25923 is performance standard for antimicrobial susceptibility testing. S. aureus ATCC 33591 showed resistance against erytrhromycin, penicillin, and streptomycin. We used microarray to compare RNA expression between sensitive and resistant strain of S. aureus as a preliminary research for MRSA inhibition. S. aureus strains were cultivated in tryptic soy broth at 37℃ for 18hrs and harvested for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. A key factor of S. aureus pathogenesis is the production of virulence proteins that are secreted into the extracellular matrix damaging host tissues and forming abscesses that may serve as replicative niches for the bacteria. We recently discovered that host-derived cis-unsaturated fatty acids activate the transcription and translation of EsxA, a protein that plays a central role in abscess formation in clinically relevant MRSA strains. Additionally, we discovered that fatty acid stimulation of EsxA is dependent on fakA, a gene that encodes a protein responsible for the incorporation of exogenous fatty acids into the S. aureus phospholipid membrane. In order to gain a comprehensive understanding of host-fatty-acid-sensing in S. aureus, we performed RNA-Seq analysis on WT Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, in the presence and absence of 10μM linoleic acid.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health, as the US mortality rate outweighs those from HIV, tuberculosis, and viral hepatitis combined. In the wake of the COVID-19 pandemic, antibiotic resistant bacterial infections acquired during hospital stays have increased. Instead of designing and deploying new antibiotics which MRSA would quickly develop resistance to, adjuvants are a key strategy to combatting these bacteria. We have evaluated several small molecule adjuvants that have strong potentiation with β-lactam antibiotics and have now investigated at the molecular level how the lead adjuvant exerts its effects. We hypothesized that the expression levels of key resistance genes would decrease once cotreated with a β-lactam antibiotic (oxacillin) and the adjuvant (compound 8). Furthermore, bioinformatic analyses would reveal biochemical pathways enriched in differentially expressed genes. RNA-seq analysis showed 176 and 233 genes significantly up and downregulated, respectively, upon cotreatment with oxacillin and compound 8. We identified four subclusters of genes that were regulated in similar patterns in response to drug treatment. Many of these genes displayed a similar pattern of expression where they were unaffected by compound 8 treatment alone, upregulated upon antibiotic challenge, and downregulated again upon cotreatment. GO categories that were significantly enriched among downregulated genes involved carbohydrate utilization and/or transport. Most of the biochemical pathways enriched with significantly downregulated genes involved carbohydrate utilization, such as the citric acid cycle (p=6.4x10-6) and the phosphotransferase system (p=1.8x10-5). The most populated pathway was S. aureus infection (p=3.0x10-3). Creating a network of affected gene products helped uncover potential master regulators for further investigation. This study revealed a dramatic impact of our lead adjuvant on the transcriptome that is consistent with a pleiotropic effect. These results point to this adjuvant as having potential broad therapeutic use in combatting MRSA infections.
Project description:Resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high rates of mortality. Antimicrobial peptides are source of molecules for new antimi-crobials development, such as melittin, a fraction of venom from Apis mellifera bee. The aims of this work were to evaluate antibacterial and antibiofilm activity of melittin and its association with oxa-cillin (meltoxa) on MRSA isolates and to investigate mechanisms of action on MRSA by using proteomic analysis.
Project description:Proteomic analysis of Staphylococcus aureus strain NCTC8325 (MRSA) grown in rich medium. This strain produces 97% of persister in stationary phase. Exponential and stationary phase MRSA were compared to elucidate pathways that are modulated in the persister state compared to dividing cells.