Project description:To better understand the epigenetic mechanism underlying pubertal onset, the hypothalamic genome-wide chromatin accessibility patterns in mouse arcuate nucleus at early and late pubertal stages were explored. Female mice have been widely used in multiple studies on pubertal development as they present the similar molecular behaviors in HPG axis and stable cycles of menstrual calendar like human. Hypothalamic ARC underwent a huge epigenetic and genetic reprogramming to adapt to the response and feedback on sexual hormones during the stages of early pubertal (2-5-week of age) and late puberty (5-8-week of age) . We harvested 4- and 8-week hypothalamic ARC and employed ATAC-seq on a genome-wide scale. Combined with previous RRBS, RRHP and RNA-seq, the connections between DNA (hydroxyl)methylation in retroelements and gene expression were studied, emphasizing the importance of epigenetic alterations in regulating transcription in puberty onset.
Project description:To better understand the epigenetic mechanism underlying pubertal onset, the hypothalamic genome-wide DNA methylation and hydroxymethylation patterns as well as the transcription profiles in mouse arcuate nucleus at early and late pubertal stages were explored. Female mice have been widely used in multiple studies on pubertal development as they present the similar molecular behaviors in HPG axis and stable cycles of menstrual calendar like human. Hypothalamic ARC underwent a huge epigenetic and genetic reprogramming to adapt to the response and feedback on sexual hormones during the stages of early pubertal (2-5-week of age) and late puberty (5-8-week of age) . We harvested 4- and 8-week hypothalamic ARC and employed RNA-seq, reduced representation bisulfite sequencing (RRBS) and hydroxymethylation profiling (RRHP) on a genome-wide scale. We identified a large number of differential expressed genes (DEGs) and differential 5(h)mC signals across the whole genome. We discovered novel connections between DNA (hydroxyl)methylated modification and gene expression, emphasizing the importance of epigenetic alterations in regulating transcription in puberty onset.
Project description:To better understand the epigenetic mechanism underlying pubertal onset, the hypothalamic genome-wide DNA methylation and hydroxymethylation patterns as well as the transcription profiles in mouse arcuate nucleus at early and late pubertal stages were explored. Female mice have been widely used in multiple studies on pubertal development as they present the similar molecular behaviors in HPG axis and stable cycles of menstrual calendar like human. Hypothalamic ARC underwent a huge epigenetic and genetic reprogramming to adapt to the response and feedback on sexual hormones during the stages of early pubertal (2-5-week of age) and late puberty (5-8-week of age) . We harvested 4- and 8-week hypothalamic ARC and employed RNA-seq, reduced representation bisulfite sequencing (RRBS) and hydroxymethylation profiling (RRHP) on a genome-wide scale. We identified a large number of differential expressed genes (DEGs) and differential 5(h)mC signals across the whole genome. We discovered novel connections between DNA (hydroxyl)methylated modification and gene expression, emphasizing the importance of epigenetic alterations in regulating transcription in puberty onset.
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.