Project description:<p>Relapse and treatment resistance are common in children with high-risk neuroblastoma, and novel therapies are needed. Conventional drug discovery is slow, expensive, often fails in practice, and consequently falls short in addressing pediatric and rare conditions. In such instances, drug repurposing is a promising strategy. Here, we used two independent in silico prediction tools including machine learning to identify approved drugs for repurposing against neuroblastoma. The combination of statins and phenothiazines showed strong synergistic effects in human neuroblastoma organoids, decreased tumor growth and prolonged survival in MYCN-amplified neuroblastoma patient-derived xenografts. The drug combination altered cholesterol metabolism through two different mechanisms and induced a phenotypic change towards an adrenergic state in vitro, which was associated with enhanced chemosensitivity. Integration of the drug combination into standard-of-care chemotherapy regressed tumors and prolonged survival in chemoresistant patient-derived xenografts. Thus, a combination of safe and approved medications added to standard-of-care chemotherapy outperforms chemotherapy alone in chemoresistant neuroblastoma.</p>
Project description:The present study describes a novel xenograft-based biomarker discovery platform and proves its usefulness in the discovery of novel serum markers for prostate cancer (PCa). By immunizing immuno-competent mice with serum from nude mice bearing PCa xenografts, an antibody response against xenograft-derived antigens was elicited. By probing protein microarrays with serum from immunized mice, several PCa-derived antigens were identified, of which a subset was successfully retrieved in serum from mice bearing PCa xenografts and validated in human serum samples of PCa patients. In conclusion, this novel method allows for the identification of low abundant cancer-derived serum proteins, circumventing dynamic range and host-response issues in standard patient cohort proteomics comparisons.
Project description:A set of 17 prostate cancer patient-derived xenografts (PDX, Lin et al 2014, Cancer research) was analyzed by mass spectrometry-based proteomics to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas.
Project description:We profiled the epigenomes of neuroendocrine prostate cancer and prostate adenocarcinoma patient-derived xenografts using ChIP-seq for transcription factors and histone modifications.
Project description:Raw mass spec files for the protein interactomes of MALAT1, polyadenylated RNA, and scrambled controls in mouse liver and patient derived prostate tumor xenografts XG147 and XG77 as determined by HyPR-MS.
Project description:Prostate cancer discovery and translational research are hampered by a lack of preclinical models which accurately reproduce the biological heterogeneity observed in patients. Accordingly, we have established a bank of transplantable patient-derived prostate tumor xenograft lines, using subrenal capsule grafting of human tumor tissue into immuno-deficient mice. This panel includes the first lines generated from primary prostate cancer tissue, and also new lines from metastatic tissue. Critically, the lines retained salient features of the original patient tumors, including histopathology, clinical marker expression, chromosomal aberration and gene expression profiles. Furthermore, they span major histopathological and molecular subtypes of prostate cancer, capturing diverse inter- and intra-tumoral heterogeneity. Host castration led to the development of castrate-resistant tumors, including the first model of complete neuroendocrine transdifferentiation. This publicly-available resource provides novel tools to advance mechanistic understanding of disease progression and response to therapy, and delivers clinically-relevant model systems for evaluation of preclinical drug efficacy. 3 primary tumors and 21 xenograft tumors
Project description:Prostate cancer discovery and translational research are hampered by a lack of preclinical models which accurately reproduce the biological heterogeneity observed in patients. Accordingly, we have established a bank of transplantable patient-derived prostate tumor xenograft lines, using subrenal capsule grafting of human tumor tissue into immuno-deficient mice. This panel includes the first lines generated from primary prostate cancer tissue, and also new lines from metastatic tissue. Critically, the lines retained salient features of the original patient tumors, including histopathology, clinical marker expression, chromosomal aberration and gene expression profiles. Furthermore, they span major histopathological and molecular subtypes of prostate cancer, capturing diverse inter- and intra-tumoral heterogeneity. Host castration led to the development of castrate-resistant tumors, including the first model of complete neuroendocrine transdifferentiation. This publicly-available resource provides novel tools to advance mechanistic understanding of disease progression and response to therapy, and delivers clinically-relevant model systems for evaluation of preclinical drug efficacy. 3 primary tumors and 22 xenograft tumors