Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Young (3 months) and old (21 months) mice were treated with Bleomycin or with control saline solution and analyzed transcript and protein expression over 8 weeks (Day 0, 14, 21, 28, 35, 42, 49, 56).
Project description:To address the gap between acute bleomycin-induced fibrosis in mice and the chronic nature of human IPF, we performed RNA-seq on lung tissue from single-dose and repetitive bleomycin models of idiopathic pulmonary fibrosis (BLEO-IPF). We find that the repetitive BLEO-IPF model recapitulates the key features of progressive fibrosis and senescence, offering a relevant pre-clinical platform for studying chronic IPF pathology and evaluating anti-fibrotic interventions.
Project description:There were similarities in the microRNA expression profiles in sheep model and idiopathic pulmonary fibrosis (IPF) suggest that bleomycin induced lung injuries share similar molecular mechanisms associated with the disease IPF
Project description:Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis, yet in this model it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed delayed and incomplete lung function recovery 8 weeks after Bleomycin instillation. This shift in structural and functional repair in old Bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways which underpin the lung repair process.
Project description:Intratracheal application of bleomycin is known to induce inflammatory and fibrotic reactions in the lung within a short period of time and histological features include infiltration of inflammatory cells, collagen deposition and obliteration of alveolar spaces. Because some of these features are found in patients with idiopathic pulmonary fibrosis (IPF), the bleomycin-induced lung fibrosis animal model is commonly used. However, exploratory treatments that were successfully used in this animal model and progressed to clinical trials lacked significant efficacy in humans. Here, the bleomycin-induced rat lung fibrosis model was studied using whole genome expression data that was collected at various time points and the relevance to human disease was evaluated through comparison with whole genome expression data from IPF patient-derived lung biopsies. The highest gene expression correlation between both species was observed in animals 7 days after bleomycin instillation. These gene expression signatures helped to identify a set of twelve novel disease-relevant translational gene markers that were able to separate IPF patients from controls. Furthermore, three Wnt/-catenin pathway-related genes that belong to this translational gene marker set showed, together with clinical diffusing capacity of the lung for carbon monoxide (DLCO) measurements, the potential to stratify IPF patients according to disease severity. Pirfenidone attenuated a subset of the translational gene markers in the bleomycin-induced fibrosis model, in particular those related to Wnt/-catenin-signaling. This novel translational gene marker panel offers improved possibilities to evaluate disease-modifying efficacy of novel therapeutic concepts in the bleomycin-induced rat lung fibrosis model and could be applied as a diagnostic and prognostic tool for IPF patient care. Comparison of bleomycin-treated and control rats after 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks and 8 weeks; 5 animals per group
Project description:The most preclinical used in vivo model to study lung fibrosis is the bleomycin-induced lung fibrosis model in 2-3-month-old mice. Although this model resembles key aspects of idiopathic pulmonary fibrosis (IPF), there are limitations in its predictability for the human disease. One of the main differences is the juvenile age of animals that are usually used in experiments, resembling humans of around 20 years. Because IPF patients are usually older than 60 years, aging appears to play an important role in the pathogenesis of lung fibrosis. We here compared young (3 months) and old (21 months) mice 21 days after intratracheal bleomycin instillation.
Project description:Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of TGFβ1 as the major player in the pathogenesis of the disease. This study designed novel human- and mouse-specific siRNAs and siRNA/DNA chimeras targeting both human and mouse common sequences and evaluated their inhibitory activity in pulmonary fibrosis induced by bleomycin and lung-specific transgenic expression of human TGFβ1. Selective novel sequences of siRNA and siRNA/DNA chimeras efficiently inhibited pulmonary fibrosis, indicating their applicability as tools for treating fibrotic disease in humans. Total RNA was extracted from lung tissue from mice with bleomycin (BLM)-induced lung fibrosis treated with mouse TGFβ1 siRNAs or vehicle on different days after BLM infusion.
Project description:Idiopathic pulmonary fibrosis (IPF) is a progressing chronic and fibrotic lung response with poor prognosis. To study the underlying molecular mechanisms of IPF, the rat bleomycin model is commonly used. Intratracheal application of bleomycin is known to induce inflammatory and fibrotic processes in the lung, e.g. infiltratin of inflammatory cells and collagen deposition. Recently, the PDE4B inhibitor BI 1015550 has been reported to prevent a decrease in lung function in patients with IPF. Here we examined the effect of PDE4 inhibitor BI 1015550 in the rat bleomycin model on transcriptional level by RNASeq.