Project description:To characterize the role of Rv0516c in the osmotic stress response of Mycobacterium tuberculosis (Mtb), we performed transcriptional profiling of CDC1551 Rv0516c::Tn following treatment with 140 mM NaCl for 1 hr relative to an untreated control.
Project description:Latent tuberculosis infection (LTBI) relies on a homeostasis of macrophages and Mycobacterium tuberculosis (Mtb). The small heat shock protein, Mtb Hsp16.3 (also known as latency-associated antigen), plays an important role in Mtb persistence within macrophages. However, the mechanism of LTBI remains elusive. The aim of this study was to delineate LTBI-related miRNA expression in U937 macrophages expressing Mtb Hsp16.3 protein. This study intends to explore the potential function of miRNAs in the interaction of macrophages with Mtb Hsp16.3 and provide insights for investigating the role of macrophage homeostasis in LTBI.
Project description:The global protein expression of Mycobacterium tuberculosis H37Rv, responding to VC treatment (5 mM for 24 h), was monitored via tandem mass tag (TMT)-based quantitative proteomic analysis.
Project description:Rifampicin plays an important role during tuberculosis treatment, which historically contributed for shortening therapy; however, rifampicin resistance has been the intersection for the definition of multi (MDR-TB) and extensively (XDR-TB) resistant outcomes. A key aspect which has contributed for investigations of drug action/resistance is the understanding of the dynamic genome expression, as that analyzed by Proteomics. Proteins from the reference strain, Mycobacterium tuberculosis H37Rv were extracted after 12, 24 and 48 hours over rifampicin challenge at the minimal inhibitory concentration (0.03 μg•mL-1) and identified by LC-MS.