Project description:Sequencing was performed to assess the ability of Nanopore direct cDNA and native RNA sequencing to characterise human transcriptomes. Total RNA was extracted from either HAP1 or HEK293 cells, and the polyA+ fraction isolated using oligodT dynabeads. Libraries were prepared using Oxford Nanopore Technologies (ONT) kits according to manufacturers instructions. Samples were then sequenced on ONT R9.4 flow cells to generate fast5 raw reads in the ONT MinKNOW software. Fast5 reads were then base-called using the ONT Albacore software to generate Fastq reads.
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:Purpose: The aim of this study is to determine the expression profile in whole blood samples of children infected with respiratory syncytial virus and other respiratory viruses. Method: Host mRNA profiles in whole blood samples of children were generated by next-generation sequencing using Illumina Hiseq. Sequence reads were trimmed for adapter using skewer, mapped to reference human genome using STAR, and quantified using RSEM. Differential expression analysis was performed using DESeq2. Results: Transcriptional module analysis revealed dysregulation of genes related to inflammatory response, neutrophils, monocytes, B-cell and T-cell response. Conclusion: This study showed an imbalance in innate and adaptive immune responses in children with respiratory virus infections. This study also showed that NGS provides a comprehensive assessment of transcripts in whole blood samples.
Project description:We identified hankyphage prophages within B. thetaiotaomicron isolates gathered from French hospitals. We extracted genomic DNA from an overnight culture from a single colony of each strain and sequenced them using Nanopore sequencing using the Plasmidsaurus platform. This long-read approach helped the assembly of the phages and determination of the hankyphage ends. We also improved the annotation of the reference hankyphage (hankyphage p00 from P. dorei HM719) using a structural prediction approach and annotated our B. thetaiotaomicron hankyphages using this new annotation. In this project we upload the genomic raw reads of nanopore sequencing of our hankyphage-bearing B. thetaiotaomicron collection (jmh strains) and the processed assembled hankyphages.
Project description:Rapidly increased studies by third-generation sequencing [Pacific Biosciences (Pacbio) and Oxford Nanopore Technologies (ONT)] have been used in all kinds of research areas. Among them, the plant full-length single-molecule transcriptome studies were most used by Pacbio while ONT was rarely used. Therefore, in this study, we developed ONT RNA-sequencing methods in plants. We performed a detailed evaluation of reads from Pacbio and Nanopore PCR cDNA (ONT Pc) sequencing in plants (Arabidopsis), including the characteristics of raw data and identification of transcripts. We aimed to provide a valuable reference for applications of ONT in plant transcriptome analysis.