Project description:Anterior tibialis removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40057-GSM40063 AND GSM40956. Liver removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 10ug of total RNA. GSM40064-GSM40071. Medial gastrocnemius removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40072-GSM40079. Medial gastrocnemius removed from 8-month old muscle glycogen synthase WT or overexpressing mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40080-GSM40089
Project description:Anterior tibialis removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40057-GSM40063 AND GSM40956. Liver removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 10ug of total RNA. GSM40064-GSM40071. Medial gastrocnemius removed from 3-month old muscle glycogen synthase WT or knockout mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40072-GSM40079. Medial gastrocnemius removed from 8-month old muscle glycogen synthase WT or overexpressing mouse. RNA was extracted using GibcoBRL TRIzol Reagent and a Quiagen RNeasy kit. Targets were produced using standard Affymetrix procedures from about 5ug of total RNA. GSM40080-GSM40089 Keywords: other
Project description:Tibialis anterior and gastrocnemius muscle from Eif6 heterozygous mice and wild-type mice profiled using Agilent gene expression arrays
Project description:Analysis of tibialis anterior (TA) muscle isolated from wildtype (WT) and Mettl21e deletion mice (KO). Results provide unbiased gene expression profile of TA muscle after Mettl21e deletion.
Project description:Hexose-6-phosphate dehydrogenase (H6PD)is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver, H6PD is required for the 11-oxoreductase activity of 11ss-hydroxysteroid dehydrogenase type 1 (11ss-HSD1), which converts inactive 11-oxo glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in Type II (fast) fibers which have increased glycogen content. They also display a progressive vacuolar myopathy evident after 4 weeks of age. We carried out microarray analysis on TA and soleus muscles from 4 week old WT and KO mice to determine an expression profile predicting myopathy. Experiment Overall Design: 4 week old mice are weaned and do not display overt histological evidence of myopathy. Soleus and tibialis anterior are used as comparison groups as they have distinct fibre type content and differing metabolic properties. 3 biological replicates are used for each genotpye and sample type.
Project description:Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice to determine the factors underlying their selective vulnerability in sinal muscular atrophy.
Project description:We identified genes expressed in mouse skeletal muscle, during the process of muscle regeneration after injury, which are dysregulated in the absence of Mef2a expression. MEF2A is a member of the evolutionarily conserved MEF2 transcription factor family which has known roles in cardiac muscle development and function, but is not well studied in skeletal muscle. We performed a comparison of gene expression profiles in wild type and MEF2A knockout tibialis anterior muscle, seven days post-injury with cardiotoxin. The results indicated that a variety of genes expressed during muscle regeneration, predominantly microRNAs in the Gtl2-Dio3 locus, are dysregulated by the loss of MEF2A expression. Skeletal muscle RNA used in the present study included the following two sample groups: (WT) pooled total RNA from tibialis anterior muscle taken from 5 wild type mice at seven days post-injury with 10uM cardiotoxin; (KO) pooled total RNA from tibialis anterior muscle taken from 5 Mef2a knockout mice at seven days post-injury with 10uM cardiotoxin. All mice were between 2-4 months of age. Both male and female mice were used.
Project description:PGC1b transgenic mice were generated to selectively over-express PGC1b in skeletal muscles using human skeletal alpha-actin gene promoter. The gene expression profiles were collected from Tibialis anterior (TA) muscles of wild type (WT) and PGC1b transgenic (TG) mice. Tibialis anterior muscles from three month old WT and PGC1b transgenic male mice.
Project description:We report that whole body PRMT7-/- adult mice display a significant reduction in in muscle mass. RNA sequencing was performed to identify potential PRMT7 targets. We found that top canonical pathways affected by the loss of PRMT7 includes cell cycle and senescence. RNA was extracted from tibialis anterior muscles harvested from 3 WT and 3 PRMT7 null mice at 8months. RNA sequencing was performed to compare mRNA in skeletal muscles between WT and KO mice.