Project description:Mouse primary dermal fibroblasts were treated with 100 nM endothelin-1 (ET1) synthetic peptide for 24 hours. Control samples received no ET1 peptide. The experiment compared treated to untreated to identify gene expression changes due to ET1 exposure. There are three biological replicates for both control and treated samples. These biological replicates represent separate derivations of primary dermal fibroblasts from genetically identical mouse litters aged 0-3 days.
Project description:Skin damage from solar ultraviolet radiation (UVR) accumulates in the dermal extracellular matrix (ECM) and contributes to photoaging. Following UVR exposure, matrix metalloproteinases (MMPs) are secreted by dermal fibroblasts to repair and remodel the ECM. Molecular signaling pathways delineating the induction of MMPs are currently well-defined; however, the effects of UV exposure on epigenetic mechanisms of MMP induction are not as well understood. An epigenetic mechanism would further describe how MMP genes are regulated in response to UV. In this study, we examined solar simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). This set of gene expression data was generated to identify photoaging related genes (including MMP) that were impacted by ssUVR exposure in our system.
Project description:Skin damage from solar ultraviolet radiation (UVR) accumulates in the dermal extracellular matrix (ECM) and contributes to photoaging. Following UVR exposure, matrix metalloproteinases (MMPs) are secreted by dermal fibroblasts to repair and remodel the ECM. Molecular signaling pathways delineating the induction of MMPs are currently well-defined; however, the effects of UV exposure on epigenetic mechanisms of MMP induction are not as well understood. An epigenetic mechanism would further describe how MMP genes are regulated in response to UV. In this study, we examined solar simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). This set of gene expression data was generated to identify photoaging related genes (including MMP) that were impacted by ssUVR exposure in our system.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff3 knock-out mouse model, 21 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:The aim of the study was to investigate whether the trefoil peptide genes, in concerted action with a miRNA regulatory network, were contributing to nutritional maintrenance. Using a Tff2 knock-out mouse model, 48 specific miRNAs were noted to be significantly deregulated when compared to the wild type strain.
Project description:To determine if aberrant activation of endothelin-1 (Et1) could lead to the dysregulation of many downstream genes, we exposed fibroblasts to exogenous ET1 peptide and assayed for transcriptional changes by microarray. Mouse dermal fibroblasts were treated with exogenous Et1 peptide for 24 hours. ET1 treatment resulted in significant expression changes — primarily downregulation — of a number of genes. In particular, Tgfβ2 and Tgfβ3 were among the downregulated genes, which in turn alter the expression status of their many target genes. These data suggest that the stable silencing of Et1 is important for the phenotypic stability of dermal fibroblasts, and perhaps many other cell types as well. Keywords: endothelin-1; Et1; dermal fibroblast
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.