Project description:Expression of key transcription factors Klf4, Oct3/4, Sox2, and c-Myc (KOSM) in embryonic stem cells can reprogram somatic cells into pluripotent cells. We found that two histone variants, TH2A and TH2B, and histone chaperone Npm enhance the KOSM-dependent generation of induced pluripotent cells (iPSCs) and produce iPSCs only with Klf4 and Oct3/4. To identify directly affected genes by these histone variants during reprogramming, we carried out gene expression profiling of MEFs overexpressing TH2A/TH2B/Npm and TH2A/TH2B deficient MEFs after infection with retroviruses expressing KOSM.
Project description:Expression of key transcription factors Klf4, Oct3/4, Sox2, and c-Myc (KOSM) in embryonic stem cells can reprogram somatic cells into pluripotent cells. We found that two histone variants, TH2A and TH2B, and histone chaperone Npm enhance the KOSM-dependent generation of induced pluripotent cells (iPSCs) and produce iPSCs only with Klf4 and Oct3/4. To identify directly affected genes by these histone variants during reprogramming, we carried out gene expression profiling of MEFs overexpressing TH2A/TH2B/Npm and TH2A/TH2B deficient MEFs after infection with retroviruses expressing KOSM. A total of 21 Affymetrix Mouse Gene ST array were done for mRNA expression profiling of ES cells, iPS cells induced by Klf4, Oct4, Sox2, and c-Myc (KOSM) or Klf4, Oct4, Th2a, Th2b, and p-Npm (KOBAN), wild-type MEFs infected with retrovirus vectors expressing KOSM, KOSMBAN, or empty vector and Th2a/Th2b-deficient MEFs infected with retrovirus vector expressing KOSM.
Project description:We recently showed that some human induced pluripotent stem cell (iPSC) clones were defective in neural differentiation and were marked with the activation of long term repeats (LTRs) of human endogenous retroviruses (HERVs). We herein demonstrated that these LTRs were transiently overexpressed during the generation of iPSCs and contributed to reprogramming. When the generation of iPSCs was completed, LTRs were re-suppressed to levels similar to those in human ES cells. However, differentiation-defective iPSC clones maintained high LTR expression levels, which indicated that these clones failed to complete reprogramming. lincRNA-RoR, a long intergenic non-coding RNA (lincRNA) that was previously shown to support the induction and maintenance of pluripotency, was detected among the LTR-driven transcripts. Short hairpin RNAs against the conserved sequence in LTRs or lincRNA-RoR markedly reduced the efficiency of iPSC generation. Reprogramming factors including OCT3/4, SOX2, and KLF4 bound to most LTRs. The expression of KLF4 was low in normal iPSC clones, but remained high in differentiation-defective clones. The forced expression of KLF4 in human embryonic stem cells led to the activation of LTRs and defects in neural differentiation. These results demonstrated that the transient overexpression of KLF4/LTR/lincRNA-RoR played crucial roles in reprogramming toward pluripotency in humans, whereas a failure in its re-silence resulted in differentiation defects. OCT3/4, SOX2 and KLF4 bindings in human dermal fibroblast and iPSC
Project description:We report screening of genes differentially expressed in cells isolated from immature and mature third molar teeth. Among them, a homeobox transcription factor, distal-less homeobox 4 (DLX4) was highly expressed in immature human dental pulp cells, and significantly enhanced iPSC colony formation in combination with OCT3/4, SOX2, and KLF4 to the level comparable with that using classical combination of Yamanaka's factors, OCT3/4, SOX2, KLF4, and c-MYC.
Project description:Cell fate transitions are accompanied by global transcriptional, epigenetic and topological changes driven by transcription factors (TFs), as is strikingly exemplified by reprogramming somatic cells to pluripotent stem cells (PSCs) via expression of OCT4, KLF4, SOX2 and cMYC. How TFs orchestrate the complex molecular changes around their target gene loci in a temporal manner remains incompletely understood. Here, using KLF4 as a paradigm, we provide the first TF-centric view of chromatin reorganization and its association to 3D enhancer rewiring and transcriptional changes of linked genes during reprogramming of mouse embryonic fibroblasts (MEFs) to PSCs. Inducible depletion of KLF factors in PSCs caused a genome-wide decrease in the connectivity of enhancers, while disruption of individual KLF4 binding sites from PSC-specific enhancers was sufficient to impair enhancer-promoter contacts and reduce expression of associated genes. Our study provides an integrative view of the complex activities of a lineage-specifying TF during a controlled cell fate transition and offers novel insights into the order and nature of molecular events that follow TF binding.
Project description:The forced expression of Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc) reprograms cells into induced pluripotent stem cells (iPSCs) through a series of sequential cell fate conversions. The order and robustness of gene expression changes are highly depended on the Yamanaka factor stoichiometry. We specifically focused on two different reprogramming paths induced by high- and low-Klf4 stoichiometry, which were accomplished by introducing OK+9MS or OKMS polycistronic cassettes, respectively, into mouse embryonic fibroblasts. By comparing these reprograming intermediates with embryonic stem cells (ESCs) and primary keratinocytes, we identified high-Klf4 specific, transiently up-regulated epithelial genes. We found that expression of these epithelial genes was enriched in a TROP2-positive cell population. Moreover, we identified a set of transcription factors which are candidates for the regulation of transiently expressed epithelial genes, and revealed their connection to high-Klf4-specific reprogramming hallmarks.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Chickarmane2006 - Stem cell switch reversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957907314
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
Project description:Chickarmane2006 - Stem cell switch irreversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957942740
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.