ABSTRACT: We compared the methylated and non-methylated regions in the genome of ex vivo-isolated naive CD4+ T cells, Th1 cells, Th17 cells and regulatory T cells by methyl-CpG binding domain protein sequencing (MBD-seq). Naive T cells and Th1 cells share more methylated regions than naive T cells and Th17 cells or Th1 and Th17 cells. However, analysis of the non-methylated regions revealed the highest similarity between Th1 and Th17 cells. Another aim was the analysis of the Th17 lineage on the basis of the methylome. We searched for regions absent in the methylome of Th17 but present in naive T cells, Th1 cells and regulatory T cells. Here, we identified differential methylation in the loci of Il17a, Chn2, Dpp4 and Dclk1. CD4+ T effector cells were prepared ex vivo, stimulated with PMA/Ionomycin, subjected to a comercially available cytokine secretion kit (IL-17A and IFNg), stained by adding fluorescence-labeled antibodies against CD3, CD4 and CD45RB and sorted by flow cytometry. We sorted naive CD4+ T cells (CD3+CD4+CD45RB_high), Th1 cells (CD3+CD4+CD45RB_low_IFNg+IL17A-), Th17 cells (CD3+CD4+CD45RB_low_IFNg-IL17A+) and regulatory T cells (CD3+CD4+CD25++).
Project description:We compared the methylated and non-methylated regions in the genome of ex vivo-isolated naive CD4+ T cells, Th1 cells, Th17 cells and regulatory T cells by methyl-CpG binding domain protein sequencing (MBD-seq). Naive T cells and Th1 cells share more methylated regions than naive T cells and Th17 cells or Th1 and Th17 cells. However, analysis of the non-methylated regions revealed the highest similarity between Th1 and Th17 cells. Another aim was the analysis of the Th17 lineage on the basis of the methylome. We searched for regions absent in the methylome of Th17 but present in naive T cells, Th1 cells and regulatory T cells. Here, we identified differential methylation in the loci of Il17a, Chn2, Dpp4 and Dclk1.
Project description:Naive murine CD4+ T cells from GREAT/SMART-17A mice were cultured under Th1 or Tfh(1 ng/ml TGF-β)-polarizing conditions in 96-well plates coated with anti-CD3/anti-CD28 for 3.5 days; sorted by flow cytometry on IFNg+ (Th1), or CXCR5-IL17A+ (Th17) and CXCR5+IL17A- (Tfh); and subjected to bulk RNA-seq.
Project description:CD4+ T cells are critical components in the human immune system. They produce cytokines to fight against pathogens and abnormal cells and stimulate other cells, such as B cells, macrophages, and neutrophils, to generate an immune response.
Naive CD4+ T cells are precursor cells that can differentiate into T helper - 1, - 2, - 17 (Th1, Th2, Th17) and regulatory T cells (Tregs) subtypes based on the type of pathogens or disease. The naive CD4+ T cell model consists of 5179 reactions, 3153 metabolites, and 1055 genes. Together with Th1, Th2, and Th17 models, the naive CD4+ T cell model helped identify drug targets and repurposable drugs against autoimmune diseases.
Project description:In this study, we examined differential gene expression in naïve human CD4+ T cells, as well as in effector Th1, Th17-negative and Th17-enriched CD4- T cell subsets. We observed a marked enrichment for increased gene expression in effector CD4+ T cells compared to naive CD4+ among immune-mediated disease oci genes. Within effector T cells, expression of disease-associated genes was increased in Th17-enriched compared to Th17-negative cells. We used microarray to examine the gene expresssion profile and level of human naïve, Th1 and effector T cell subsets. Human PBMCs were isolated and sorted to naïve, CD161-CCR6- and CD161+CCR6+ memory T cells. Naïve T cells were differentiatied to Th1 cells, and CD161-CCR6- and CD161+CCR6+ memory T cells were in vitro expanded for Th17-negative and Th17-enriched effector T cells. The gene profile was compared among naive, Th1, Th17-negative, and Th17-enriched cell subsets.
Project description:In this study, we examined differential gene expression in naïve human CD4+ T cells, as well as in effector Th1, Th17-negative and Th17-enriched CD4- T cell subsets. We observed a marked enrichment for increased gene expression in effector CD4+ T cells compared to naive CD4+ among immune-mediated disease oci genes. Within effector T cells, expression of disease-associated genes was increased in Th17-enriched compared to Th17-negative cells. We used microarray to examine the gene expresssion profile and level of human naïve, Th1 and effector T cell subsets.
Project description:<p>We use next generation sequencing to investigate the different transcriptomes of closely related CD4+ T-cells from healthy human donors to elucidate the genetic programs that underlie their specialized immune functions. Six cell types were included: Regulatory T-cells (CD25hiCD127low/neg with >95% FOXP3+ purity), regulatory T-cells activated using PMA/ionomycin, CD25-CD45RA+ ('naive' helper T-cells), CD25-CD45RO+ ('memory' helper T-cells), activated Th17 cells (>98% IL17A+ purity) and activated IL17-CD4+ T-cells (called 'ThPI'). Poly-T capture beads were used to isolate mRNA from total RNA, and fragment sizes of ~200 were sequenced from both ends on Illumina's genome analyzer. We confirm many of the canonical signature genes of T-cell populations, but also discover new genes whose expression is limited to specific CD4 T-cell lineages, including long non-coding RNAs. Additionally, we find that genes encoded at loci linked to multiple human autoimmune diseases are enriched for preferential expression upon T-cell activation, suggesting that an aberrant response to T-cell activation is fundamental to pathogenesis.</p>
Project description:The epigenetic modifier TET2 plays a role in cell fate decisions in hematopeotic stem cells and CD4+ Th1 and Th17 differentiation. Here, we demonstrate that loss of TET2 promotes CD8+ memory differentiation following acute viral infection with LCMV-Armstrong. To identify early gene expression changes following TCR activation in WT versus TET2cKO CD8+ T cells, we isolated naive CD8+ T cells and activated them for three days with anti-CD3/CD28+IL-2 and performed microarray analysis.
Project description:Spleens from the B6 mice were isolated and single cell suspension was made. CD4 T cells were purified from the splenocytes using magnetic bead separation. Briefly, Splenocytes were incubated with biotinylated antibody cocktail consisting of antibodies (Biolegend) to CD19, B220, CD11b, CD11c, NK1.1, Gr1, CD25 CD8. After a wash step, cells were incubated with streptavidin conjugated magnetic particles (BD Biosciences). After washing, CD4 T cells were isolated by applying a magnetic field and removing the untouched cells. Purified CD4 T cells were then activated with plate-bound anti-CD3 plus anti-CD28 in presence of either Th1 or Th17 or Th1/17 polarizing condition for 3 days. Total RNA from the 3 days differentiated Th1, Th17 and Th1/17 cells was isolated using mirVana miRNA isolation Kit (Invitrogen).
Project description:CD4 T cells were activated using CD3/CD28 antibodies in the presence of IL2 and IL12, to generate Th1 cells. Th1 cells were maintained and expanded in IL2 and IL12, on D5 Th1 cells were sorted for CD4+ expression and DAP1 exclusion. After flow sorting, live TH1 cells were resuspended (1e6 per ml) in methionine free RPMI, supplemented with 10% dialysed FBS, IL2 and IL12, and with L-methionine (100μM, or 1μM). Cells were cultured for 5 hrs before collection for proteomics processing.