Project description:To explore the causal relationship between maternal smoking around birth and childhood asthma using Mendelian randomization (MR). Using the data from large-scale genome-wide association studies, we selected independent genetic loci closely related to maternal smoking around birth and maternal diseases as instrumental variables and used MR methods. In this study, we considered the inverse variance weighted method (MR-IVW), weighted median method, and MR-Egger regression. We investigated the causal relationship between maternal smoking around birth and maternal diseases in childhood asthma using the odds ratio (OR) as an evaluation index. Multivariable MR (MVMR) included maternal history of Alzheimer's disease, illnesses of the mother: high blood pressure and illnesses of the mother: heart diseaseas covariates to address potential confounding. Sensitivity analyses were evaluated for weak instrument bias and pleiotropic effects. It was shown with the MR-IVW results that maternal smoking around birth increased the risk of childhood asthma by 1.5% (OR = 1.0150, 95% CI: 1.0018-1.0283). After the multivariable MR method was used to correct for relevant covariates, the association effect between maternal smoking around birth and childhood asthma was still statistically significant (P < 0.05). Maternal smoking around birth increases the risk of childhood asthma.
Project description:Purpose: Birth weight has a profound long-term impact on individual's predisposition to various diseases at adulthood-a hypothesis commonly referred to as the fetal origins of adult diseases. However, it is not fully clear to what extent the fetal origins of adult diseases hypothesis holds and it is also not completely known what types of adult diseases are causally affected by birth weight. Materials and methods: Mendelian randomization using multiple genetic instruments associated with birth weight was performed to explore the causal relationship between birth weight and adult diseases. The causal relationship between birth weight and 21 adult diseases as well as 38 other complex traits was examined based on data collected from 37 large-scale genome-wide association studies with up to 340,000 individuals of European ancestry. Causal effects of birth weight were estimated using inverse-variance weighted methods. The identified causal relationships between birth weight and adult diseases were further validated through extensive sensitivity analyses, bias calculation, and simulations. Results: Among the 21 adult diseases, three were identified to be inversely causally affected by birth weight after the Bonferroni correction. The measurement unit of birth weight was defined as its standard deviation (i.e., 488 g), and one unit lower birth weight was causally related to an increased risk of coronary artery disease (CAD), myocardial infarction (MI), type 2 diabetes (T2D), and BMI-adjusted T2D, with the estimated odds ratios of 1.34 [95% confidence interval (CI) 1.17-1.53], 1.30 (95% CI 1.13-1.51), 1.41 (95% CI 1.15-1.73), and 1.54 (95% CI 1.25-1.89), respectively. All these identified causal associations were robust across various sensitivity analyses that guard against various confounding due to pleiotropy or maternal effects as well as reverse causation. In addition, analysis on 38 additional complex traits did not identify candidate traits that may mediate the causal association between birth weight and CAD/MI/T2D. Conclusions: The results suggest that lower birth weight is causally associated with an increased risk of CAD, MI, and T2D in later life, supporting the fetal origins of adult diseases hypothesis.
Project description:Background: The association between educational attainment (EA) and offspring birth weight (BW) has been reported by several traditional epidemiological studies. However, evidence for this association tends to be mixed and confounded. This study aimed to investigate the causal association between EA of parents and offspring BW. Methods: Here, we carried out a two-sample bidirectional Mendelian randomization (MR) analysis to examine the causal association between EA of males (n = 131,695) and females (n = 162,028) and offspring BW using genetic instruments. Summary statistics of EA associated single nucleotide polymorphisms (SNPs) were extracted from a GWAS incorporating 293,723 individuals of European descent performed by the Social Science Genetic Association Consortium (SSGAC), and the effects of these SNPs on offspring BW were estimated using a GWAS meta-analysis of 86,577 participants of European descent from 25 studies. Univariable MR analyses were conducted using the inverse-variance weighted (IVW) method and four other methods. Further sensitivity analyses were carried out to test the viability of the results. Multivariable MR was used to examine the confounders between the exposure and outcome. Results: The result shows evidence that the offspring BW is positively causally affected by female EA. Each one standard deviation (SD) increase in female EA was associated with 0.24 SD higher of offspring BW (95% confidence interval [CI], 0.10 to 0.37, p < 0.001 for the IVW method). Similarly, change in offspring BW was 0.21 SD (95% CI: 0.07 to 0.34, p = 2.82 × 10-3) per one SD higher in male EA. No causal effect of BW on EA was found by any of the five methods. The causal association between female EA and offspring BW maintained after adjusting for alcoholic drinks per week and BMI. The effect of male EA on offspring BW was attenuated when we adjusted for BMI and alcoholic drinks per week using multivariable MR analysis. Conclusion: Our study indicated that female EA is positively causally associated with offspring BW. The association between male EA and offspring BW may be confounded by alcoholic drinks per week and BMI.
Project description:BackgroundThe association between normal range thyroid function and offspring birth weight has been postulated, but evidence from observational studies is prone to be confounded. We conducted a two-sample Mendelian randomization (MR) study to explore the causal effects of maternal thyroid stimulating hormone (TSH) and free thyroxine (FT4) on birth weight.MethodsWe utilized public shared summary-level statistics from European-ancestry genome wide association studies. We obtained 40 and 21 single nucleotide polymorphisms as instrumental variables, which were associated with TSH and FT4 levels at genome-wide significance (P < 5 × 10-8). Partitioned maternal effects on birth weight were retrieved from datasets contributed by the Early Growth Genetics Consortium. Inverse-variance weighted method was employed in the primary MR analysis and multiple sensitivity analyses were implemented.ResultsGenetically determined normal range thyroid function was not causally associated with offspring birth weight. Each one standard deviation (SD) increase in maternal TSH was associated with 0.002 SD higher of birth weight (95% confidence interval [CI], -0.021 to 0.025; P = 0.87). Similarly, change in birth weight was -0.001 SD (95% CI, -0.031 to 0.029; P = 0.94) per one SD higher in maternal FT4. Consistent results were yielded via additional MR methods. Sensitivity analyses demonstrated no presence of horizontal pleiotropy or heterogeneity.ConclusionThis MR study did not identify a causality between normal range thyroid function and offspring birth weight in the Europeans.
Project description:BACKGROUND: Maternal smoking during pregnancy is associated with offspring obesity. However, little is known about whether maternal smoking in pregnancy predicts other offspring cardiovascular risk factors including waist circumference (WC), waist-hip-ratio (WHR), pulse rate (PR), systolic (SBP), and diastolic blood pressure (DBP). METHODS: We studied a sub-sample of 2038 (50% males) young adults who were born in Brisbane, Australia to investigate the prospective association of maternal smoking during pregnancy with young adult cardiovascular risk factors. We compared offspring mean BMI, WC, WHR, SBP, DBP and PR and the risk of being overweight and obese at 21 years by three mutually exclusive categories of maternal smoking status defined as never smoked, smoked before and/or after pregnancy but not in pregnancy or smoked during pregnancy and other times. RESULTS: Offspring of mothers who smoked during pregnancy had greater mean BMI, WC, WHR and PR and they were at greater risk of being obese at 21 years compared to offspring of those mothers who never smoked. The mean of these risk factors among those adult offspring whose mothers stopped smoking during pregnancy, but who then smoked at other times in the child's life, were similar to those mothers who never smoked. These results were independent of a range of potential confounding factors. CONCLUSION: The findings of this study suggest a prospective association of maternal smoking during pregnancy and offspring obesity as well as PR in adulthood, and reinforce the need to persuade pregnant women not to smoke.
Project description:BackgroundObservational studies have illustrated that maternal central obesity is associated with birth size, including of birth weight, birth length and head circumference, but the causal nature of these associations remains unclear. Our study aimed to test the causal effect of maternal central obesity on birth size and puberty height growth using a Mendelian randomization (MR) analysis.MethodsWe performed two-sample MR using summary-level genome-wide public data. Thirty-five single nucleotide polymorphisms (SNPs), 25 SNPs and 41 SNPs were selected as instrumental variables for waist-to-hip ratio adjusted for BMI, waist circumference adjusted for BMI and hip circumference adjusted for BMI, respectively to test the causal effects of maternal central obesity on birth size and puberty height using an inverse-variance-weighted approach.ResultsIn this MR analysis, we found no evidence of a causal association between waist circumference or waist-to-hip ratio and the outcomes. However, we observed that one standard deviation (SD) increase in hip circumference (HIP) was associated with a 0.392 SD increase in birth length (p = 1.1 × 10- 6) and a 0.168 SD increase in birth weight (p = 7.1 × 10- 5), respectively at the Bonferroni-adjusted level of significance. In addition, higher genetically predicted maternal HIP was strongly associated with the puberty heights (0.835 SD, p = 8.4 × 10- 10). However, HIP was not associated with head circumference (p = 0.172).ConclusionsA genetic predisposition to higher maternal HIP was causally associated with larger offspring birth size independent of maternal BMI. However, we found no evidence of a causal association between maternal waist circumference, waist-to-hip ratio and birth size.
Project description:BackgroundWhether the positive associations of smoking and alcohol consumption with gastrointestinal diseases are causal is uncertain. We conducted this Mendelian randomization (MR) to comprehensively examine associations of smoking and alcohol consumption with common gastrointestinal diseases.MethodsGenetic variants associated with smoking initiation and alcohol consumption at the genome-wide significance level were selected as instrumental variables. Genetic associations with 24 gastrointestinal diseases were obtained from the UK Biobank, FinnGen study, and other large consortia. Univariable and multivariable MR analyses were conducted to estimate the overall and independent MR associations after mutual adjustment for genetic liability to smoking and alcohol consumption.ResultsGenetic predisposition to smoking initiation was associated with increased risk of 20 of 24 gastrointestinal diseases, including 7 upper gastrointestinal diseases (gastroesophageal reflux, esophageal cancer, gastric ulcer, duodenal ulcer, acute gastritis, chronic gastritis, and gastric cancer), 4 lower gastrointestinal diseases (irritable bowel syndrome, diverticular disease, Crohn's disease, and ulcerative colitis), 8 hepatobiliary and pancreatic diseases (non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis, liver cancer, cholecystitis, cholelithiasis, and acute and chronic pancreatitis), and acute appendicitis. Fifteen out of 20 associations persisted after adjusting for genetically predicted alcohol consumption. Genetically predicted higher alcohol consumption was associated with increased risk of duodenal ulcer, alcoholic liver disease, cirrhosis, and chronic pancreatitis; however, the association for duodenal ulcer did not remain statistically significant after adjustment for genetic predisposition to smoking initiation.ConclusionsThis study provides MR evidence supporting causal associations of smoking with a broad range of gastrointestinal diseases, whereas alcohol consumption was associated with only a few gastrointestinal diseases.FundingThe Natural Science Fund for Distinguished Young Scholars of Zhejiang Province; National Natural Science Foundation of China; Key Project of Research and Development Plan of Hunan Province; the Swedish Heart Lung Foundation; the Swedish Research Council; the Swedish Cancer Society.
Project description:It is well-established that both the child's genetic endowments as well as maternal smoking during pregnancy impact offspring birth weight. In this paper we move beyond the nature versus nurture debate by investigating the interaction between genetic endowments and this critical prenatal environmental exposure - maternal smoking - in determining birth weight. We draw on longitudinal data from the Avon Longitudinal Study of Parents and Children (ALSPAC) study and replicate our results using data from the UK Biobank. Genetic endowments of the children are proxied with a polygenic score that is constructed based on the results of the most recent genome-wide association study of birth weight. We instrument the maternal decision to smoke during pregnancy with a genetic variant (rs1051730) located in the nicotine receptor gene CHRNA3. This genetic variant is associated with the number of cigarettes consumed daily, and we present evidence that this is plausibly the only channel through which the maternal genetic variant affects the child's birth weight. Additionally, we deal with the misreporting of maternal smoking by using measures of cotinine, a biomarker of nicotine, collected from the mother's urine during their pregnancy. We confirm earlier findings that genetic endowments as well as maternal smoking during pregnancy significantly affects the child's birth weight. However, we do not find evidence of meaningful interactions between genetic endowments and an adverse fetal environment, suggesting that the child's genetic predisposition cannot cushion the damaging effects of maternal smoking.
Project description:BackgroundThe intrauterine environment is critical for fetal growth and development. However, observational associations between maternal gestational lipid concentrations and offspring birth weight (BW) have been inconsistent and ascertaining causality is challenging.MethodsWe used a novel two-sample Mendelian randomization (MR) approach to estimate the causal effect of maternal gestational high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride concentrations on offspring BW. Single nucleotide polymorphisms (SNPs) associated with serum HDL-C, LDL-C and triglyceride concentrations identified in the Global Lipids Genetics Consortium genome-wide association study meta-analysis (n = 188 577 European-ancestry individuals; sample 1) were selected as instrumental variables. The effects of these SNPs on offspring BW were estimated using a structural equation model in the UK Biobank and Early Growth Genetics consortium (n = 230 069 European-ancestry individuals; sample 2) that enabled partitioning of the genetic associations into maternal- (intrauterine) and fetal-specific effects.ResultsWe found no evidence for a causal effect of maternal gestational HDL-C, LDL-C or triglyceride concentrations on offspring BW [standard deviation change in BW per standard deviation higher in HDL-C = -0.005 (95% confidence interval: -0.039, 0.029), LDL-C = 0.014 (-0.017, 0.045), and triglycerides = 0.014 (-0.025, 0.052)].ConclusionsOur findings suggest that maternal gestational HDL-C, LDL-C and triglyceride concentrations play a limited role in determining offspring BW. However, we cannot comment on the impact of these and other lipid fractions on fetal development more generally. Our study illustrates the power and flexibility of two-sample MR in assessing the causal effect of maternal environmental exposures on offspring outcomes.