Project description:The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up-regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf-like PTC patients with higher IMUP expression had shorter disease-free survival. The biological function of IMUP in PTC cell lines (KTC-1 and TPC-1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis-related molecules were identified by real-time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down-regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.
Project description:Long noncoding RNA cancer susceptibility candidate 2 (CASC2) has been reported to play an anticancer role in papillary thyroid cancer (PTC). Radioiodine (131I) is a common option for the treatment of PTC. However, the role and mechanism of CASC2 in 131I sensitivity remain unclear. In this study, 131I-resistant cells were constructed through continuous treatment of 131I. The expression levels of CASC2 and miR-155 were measured by qRT-PCR. The IC50 of 131I was analyzed by cell viability using MTT assay. Flow cytometry was conducted to determine cell apoptosis induced by 131I. The association between CASC2 and miR-155 was evaluated by luciferase assay and RNA immunoprecipitation. A mouse xenograft model was built to explore the effect of CASC2 on the growth of 131I-resistant PTC cells in vivo. Results showed that CASC2 expression was decreased in PTC tissues and cells, and low expression of CASC2 was associated with poor outcome of patients. CASC2 level was reduced in 131I-resistant cells. Knockdown of CASC2 inhibited 131I sensitivity in thyroid cancer cells. Overexpression of CASC2 enhanced 131I sensitivity in constructed resistant PTC cells. CASC2 was a decoy of miR-155, and CASC2-mediated promotion of 131I sensitivity was weakened by decreasing miR-155. Abundance of CASC2 inhibited the growth of 131I-resistant cells in vivo. As a conclusion, CASC2 increases 131I sensitivity in PTC by sponging miR-155, providing a novel target for the treatment of thyroid cancer patients with 131I resistance.
Project description:Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.
Project description:BackgroundStemness and chemoresistance contribute to cervical cancer recurrence and metastasis. In the current study, we determined the relevant players and role of N6-methyladenine (m6A) RNA methylation in cervical cancer progression.MethodsThe roles of m6A RNA methylation and centromere protein K (CENPK) in cervical cancer were analyzed using bioinformatics analysis. Methylated RNA immunoprecipitation was adopted to detect m6A modification of CENPK mRNA. Human cervical cancer clinical samples, cell lines, and xenografts were used for analyzing gene expression and function. Immunofluorescence staining and the tumorsphere formation, clonogenic, MTT, and EdU assays were performed to determine cell stemness, chemoresistance, migration, invasion, and proliferation in HeLa and SiHa cells, respectively. Western blot analysis, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter, cycloheximide chase, and cell fractionation assays were performed to elucidate the underlying mechanism.ResultsBioinformatics analysis of public cancer datasets revealed firm links between m6A modification patterns and cervical cancer prognosis, especially through ZC3H13-mediated m6A modification of CENPK mRNA. CENPK expression was elevated in cervical cancer, associated with cancer recurrence, and independently predicts poor patient prognosis [hazard ratio = 1.413, 95% confidence interval = 1.078 - 1.853, P = 0.012]. Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo (P < 0.001). We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK with β-catenin, which promoted β-catenin expression and nuclear translocation, facilitated p53 ubiquitination, and led to activation of Wnt/β-catenin signaling, but suppression of the p53 pathway. This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness, DNA damage repair pathways necessary for cisplatin/carboplatin resistance, epithelial-mesenchymal transition involved in metastasis, and DNA replication that drove tumor cell proliferation.ConclusionsCENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.
Project description:ObjectivesTo examine the putative functions and mechanisms of lysine crotonylation (Kcr) during the development and progression of papillary thyroid cancer (PTC).MethodsSamples of thyroid cancer tissues were collected and subjected to liquid chromatography-tandem mass spectrometry. Crotonylated differentially expressed proteins (DEPs) and differentially expressed Kcr sites (DEKSs) were analyzed by Motif, dynamic expression model analysis (Mfuzz), subcellular localization, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, Go Ontology (GO) annotation, and protein-protein interaction analysis (PPI). Validation was performed by immunohistochemistry (IHC).ResultsA total of 262 crotonylated DEPs and 702 DEKSs were quantitated. First, for the tumor/normal comparison, a dynamic expression model analysis (Mfuzz) of the DEKSs revealed that clusters 1, 3, and 4 increased with the progression of thyroid cancer; however, cluster 6 showed a dramatic increase during the transition from N0-tumor to N1-tumor. Furthermore, based on GO annotation, KEGG, and PPI, the crotonylated DEPs were primarily enriched in the PI3K-Akt signaling pathway, Cell cycle, and Hippo signaling pathway. Of note, crosstalk between the proteome and Kcr proteome suggested a differential changing trend, which was enriched in Thyroid hormone synthesis, Pyruvate metabolism, TCA cycle, Cell cycle, and Apoptosis pathways. Similarly, for the LNM comparison group, the DEKSs and related DEPs were primarily enriched in Hydrogen peroxide catabolic process and Tight junction pathway. Finally, according to The Cancer Genome Atlas Program (TCGA) database, the differential expression of Kcr DEPs were associated with the prognosis of thyroid cancer, indicating the prognostic significance of these proteins. Moreover, based on the clinical validation of 47 additional samples, Kcr was highly expressed in thyroid tumor tissues compared with normal tissue (t = 9.792, P < 0.001). In addition, a positive correlation was observed between Kcr and N-cadherin (r = 0.5710, P = 0.0015). Moreover, N-cadherin expression was higher in the relatively high Kcr expression group (χ2 = 18.966, P < 0.001).ConclusionsHigher Kcr expression was correlated with thyroid tumorigenesis and lymphatic metastasis, which may regulate thyroid cancer progression by Pyruvate metabolism, TCA cycle, Cell cycle, and other pathways.
Project description:BackgroundPokemon is an oncogenic transcription regulator that plays a critical role in cellular differentiation. Although it has been found to be overexpressed in several types of cancer involving different organs, its role in thyroid gland has yet to be reported. The objective of this study was to evaluate the expression of Pokemon in papillary thyroid carcinoma (PTC) based on clinicopathological parameters.MethodsTissue microarray samples derived from patients with PTC or benign thyroid disease were used to evaluate Pokemon expression based on immunohistochemical analysis. Correlations of its expression with various clinicopathological parameters were then analyzed.ResultsPokemon expression was observed in 22.0% of thyroid follicular cells from the normal group, 44.0% from the group with benign thyroid diseases, and 92.1% from the group with PTC (p < .001). The intensity of Pokemon expression was markedly higher in the PTC group. Pokemon expression level and PTC tumor size showed an inverse correlation. T1a tumors showed strong expression levels of Pokemon. However, larger tumors showed weak expression (p = .006).ConclusionsPokemon expression is associated with tumorigenesis of PTC, with expression showing an inverse correlation with PTC tumor size. This might be related to the negative regulation of aerobic glycolysis by Pokemon.
Project description:Growing evidence indicates that N6-methyladenosine (m6A) is the most pervasive RNA modification in eukaryotic cells. However, the specific role of METTL3 in papillary thyroid carcinoma (PTC) initiation and development remains elusive. Here we found that downregulation of METTL3 was correlated with malignant progression and poor prognosis in PTC. A variety of gain- and loss-of-function studies clarified the effect of METTL3 on regulation of growth and metastasis of PTC cells in vitro and in vivo. By combining RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (meRIP-seq), our mechanistic studies pinpointed c-Rel and RelA as downstream m6A targets of METTL3. Disruption of METTL3 elicited secretion of interleukin-8 (IL-8), and elevated concentrations of IL-8 promoted recruitment of tumor-associated neutrophils (TANs) in chemotaxis assays and mouse models. Administration of the IL-8 antagonist SB225002 substantially retarded tumor growth and abolished TAN accumulation in immunodeficient mice. Our findings revealed that METTL3 played a pivotal tumor-suppressor role in PTC carcinogenesis through c-Rel and RelA inactivation of the nuclear factor κB (NF-κB) pathway by cooperating with YTHDF2 and altered TAN infiltration to regulate tumor growth, which extends our understanding of the relationship between m6A modification and plasticity of the tumor microenvironment.
Project description:Previously, we reported that an inverse agonist of estrogen-related receptor gamma (ERRγ), GSK5182, enhances sodium iodide (Na+/I-) symporter (NIS) function through mitogen-activated protein (MAP) kinase signaling in anaplastic thyroid cancer cells. This finding helped us to further investigate the effects of GSK5182 on NIS function in papillary thyroid cancer (PTC) refractory to radioactive iodine (RAI) therapy. Herein, we report the effects of ERRγ on the regulation of NIS function in RAI-resistant PTC cells using GSK5182. RAI-refractory BCPAP cells were treated with GK5182 for 24 h at various concentrations, and radioiodine avidity was determined with or without potassium perchlorate (KClO4) as an NIS inhibitor. We explored the effects of GSK5182 on ERRγ, the mitogen-activated protein (MAP) kinase pathway, and iodide metabolism-related genes. We examined whether the MAP pathway affected GSK5182-mediated NIS function using U0126, a selective MEK inhibitor. A clonogenic assay was performed to evaluate the cytotoxic effects of I-131. GSK5182 induced an increase in radioiodine avidity in a dose-dependent manner, and the enhanced uptake was completely inhibited by KClO4 in BCPAP cells. We found that ERRγ was downregulated and phosphorylated extracellular signal-regulated kinase (ERK)1/2 was upregulated in BCPAP cells, with an increase in total and membranous NIS and iodide metabolism-related genes. MEK inhibitors reversed the increase in radioiodine avidity induced by GSK5182. Clonogenic examination revealed the lowest survival in cells treated with a combination of GSK5182 and I-131 compared to those treated with either GSK518 or I-131 alone. We demonstrate that an inverse agonist of ERRγ, GSK5182, enhances the function of NIS protein via the modulation of ERRγ and MAP kinase signaling, thereby leading to increased responsiveness to radioiodine in RAI-refractory papillary thyroid cancer cells.
Project description:BackgroundDespite a good and overall prognosis, papillary thyroid cancer (PTC) can still affect the quality of life of many patients, and can even be life-threatening due to its invasiveness and metastasis. Emerging studies demonstrate that circular RNAs (circRNAs) participate in the regulation of various cancers. However, the circRNA profile in invasive PTC is still not well understood.MethodsCompeting endogenous RNA (ceRNA) microarrays were performed to determine circRNAs contributed to the tumorigenesis and invasiveness of PTC. Bioinformatics methods were used to narrow down the candidate circRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) assays revealed a significant upregulation of hsa_circ_0058124 in PTC tissue and a close correlation with a poor prognosis for PTC patients. RNA fluorescence in situ hybridization and Cell fractionation assay were used to investigate the subcellular location of hsa_circ_0058124. Then, we examined the functions of hsa_circ_0058124 in PTC by cell proliferation, cell cycle, apoptosis, migration and invasion assay. Mechanistically, RNA sequencing and GSEA analysis were applied to predict the downstream pathway of hsa_circ_0058124. Dual-luciferase report assays were used to explore the potential miRNA sponge role of hsa_circ_0058124. Western blotting, cell proliferation, cell cycle, cell apoptosis, migration and invasion, and mouse xenograft assay were used to validate the effects of hsa_circ_0058124/NOTCH3/GATAD2A axis on PTC progression.ResultsIn the current study, a novel hsa_circ_0058124 on 2q35 was identified and explored in PTC. Hsa_circ_0058124 is associated with the malignant features and poor outcomes of PTC patients. Hsa_circ_0058124 acts as an oncogenic driver that promotes PTC cell proliferation, tumorigenicity, tumor invasion, and metastasis, which functions as a competing endogenous RNA to modulate miRNA-218-5p and its target gene NUMB expression, and consequently with repression of the NOTCH3/GATAD2A signaling axis in vitro and in vivo.ConclusionsThis study unveils a novel biomarker panel consisting of the hsa_circ_0058124/NOTCH3/GATAD2A axis which is critical for PTC tumorigenesis and invasiveness and may represent a novel therapeutic target for intervening in PTC progression.
Project description:Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models. Our findings demonstrated that BPA, at environmentally relevant concentrations, could induce significant changes in PTC cells, including a decrease in E-cadherin expression, an increase in vimentin expression, and reduced thyroglobulin (TG) secretion. These changes suggest that BPA exposure may promote epithelial-mesenchymal transition (EMT), enhance invasiveness, and reduce cell differentiation, potentially complicating treatment, including by increasing resistance to radioiodine therapy. This research highlights BPA's hazardous nature as an environmental contaminant and emphasizes the need for advanced in vitro models, like 3D tumor spheroids, to better assess the risks posed by such chemicals. It provides valuable insights into the environmental implications of BPA and its role in thyroid cancer progression, enhancing our understanding of endocrine-disrupting chemicals.