Project description:In Brazil, the production of KPC-type carbapenemases in Enterobacteriales is endemic, leading to widespread use of polymyxins. In the present study, 502 Klebsiella pneumoniae isolates were evaluated for resistance to polymyxins, their genetic determinants and clonality, in addition to the presence of carbapenem resistance genes and evaluation of antimicrobial resistance. Resistance to colistin (polymyxin E) was evaluated through initial selection on EMB agar containing 4% colistin sulfate, followed by Minimal Inhibitory Concentration (MIC) determination by broth microdilution. The susceptibility to 17 antimicrobials was assessed by disk diffusion. The presence of bla KPC, bla NDM and bla OXA-48-like carbapenemases was investigated by phenotypic methods and conventional PCR. Molecular typing was performed by PFGE and MLST. Allelic variants of the mcr gene were screened by PCR and chromosomal mutations in the pmrA, pmrB, phoP, phoQ and mgrB genes were investigated by sequencing. Our work showed a colistin resistance frequency of 29.5% (n = 148/502) in K. pneumoniae isolates. Colistin MICs from 4 to >128 µg/mL were identified (MIC50 = 64 µg/mL; MIC90 >128 µg/mL). All isolates were considered MDR, with the lowest resistance rates observed for amikacin (34.4%), and 19.6% of the isolates were resistant to all tested antimicrobials. The bla KPC gene was identified in 77% of the isolates, in consonance with the high rate of resistance to polymyxins related to its use as a therapeutic alternative. Through XbaI-PFGE, 51 pulsotypes were identified. MLST showed 21 STs, with ST437, ST258 and ST11 (CC11) being the most prevalent, and two new STs were determined: ST4868 and ST4869. The mcr-1 gene was identified in 3 K. pneumoniae isolates. Missense mutations in chromosomal genes were identified, as well as insertion sequences in mgrB. Furthermore, the identification of chromosomal mutations in K. pneumoniae isolates belonging from CC11 ensures its success as a high-risk epidemic clone in Brazil and worldwide.
Project description:ObjectivesGenomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment.MethodsGenomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters.ResultsOverall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20.ConclusionsIntegration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.
Project description:The present work reports the detection of the first case of nosocomial Klebsiella oxytoca producing class A carbapenemase KPC-2 in Brazil. The isolate KPN106 carried a 65-kb IncW-type plasmid that harbors the blaKPC gene and Tn4401b. Moreover, we detected the presence of a class 1 integron containing a new allele, arr-8, followed by a 5'-truncated dhfrIIIc gene. In view of the recent results, we emphasize the high variability of the bacterial and genetic hosts of this resistance determinant.
Project description:ObjectivesInfections due to carbapenem-resistant Enterobacterales are considered urgent public health threats and often treated with a β-lactam/β-lactamase inhibitor combination. However, clinical treatment failure and resistance emergence have been attributed to inadequate dosing. We used a novel framework to provide insights of optimal dosing exposure of ceftazidime/avibactam.MethodsSeven clinical isolates of Klebsiella pneumoniae producing different KPC variants were examined. Ceftazidime susceptibility (MIC) was determined by broth dilution using escalating concentrations of avibactam. The observed MICs were characterized as response to avibactam concentrations using an inhibitory sigmoid Emax model. Using the best-fit parameter values, %fT>MICi was estimated for various dosing regimens of ceftazidime/avibactam. A hollow-fibre infection model (HFIM) was subsequently used to ascertain the effectiveness of selected regimens over 120 h. The drug exposure threshold associated with bacterial suppression was identified by recursive partitioning.ResultsIn all scenarios, ceftazidime MIC reductions were well characterized with increasing avibactam concentrations. In HFIM, bacterial regrowth over time correlated with emergence of resistance. Overall, suppression of bacterial regrowth was associated with %fT>MICi ≥ 76.1% (100% versus 18.2%; P < 0.001). Using our framework, the optimal drug exposure could be achieved with ceftazidime/avibactam 2.5 g every 12 h in 5 out of 7 isolates. Furthermore, ceftazidime/avibactam 2.5 g every 8 h can suppress an isolate deemed resistant based on conventional susceptibility testing method.ConclusionsAn optimal drug exposure to suppress KPC-producing bacteria was identified. The novel framework is informative and may be used to guide optimal dosing of other β-lactam/β-lactamase inhibitor combinations. Further in vivo investigations are warranted.
Project description:Carbapenem resistance in Klebsiella pneumoniae, frequently conferred by the blaKPC gene, is a major public health threat. We sequenced a blaKPC-containing strain of K. pneumoniae belonging to the emergent lineage ST941, in order to better understand the evolution of blaKPC within this species.
Project description:Klebsiella pneumoniae is among the most important Gram-negative pathogens that can cause serious nosocomial infections. The emergence and prevalence of hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP) pose a significant challenge to public health. In this study, we characterized thirty carbapenem-resistant K. pneumoniae (CRKP) strains from a tertiary care hospital in Sichuan province, China, by whole-genome sequencing and genome analysis. These strains were all highly resistant to carbapenem but remained susceptible to tigecycline. Of the 30 tested CRKP strains, 23 were positive for blaKPC-2 and seven for blaNDM-5. These blaKPC-2-positive strains all belonged to ST11, while blaNDM-5-positive strains belonged to five distinct STs. Phylogenetic analysis revealed a predominant intra-hospital transmission of ST11-KL64 in KPC-2-producing CRKP, and that both clonal and horizontal transmission of blaNDM-5 have occurred among NDM-5-producing CRKP strains in this hospital. Hypervirulence genes were commonly detected in the CRKP. The prevalent pLVKP-like plasmid and ICEKp seem to have contributed largely to the transmission of virulence genes in them. blaNDM-5 was located on highly similar IncX3 plasmids in the collected strains, and its truncated vision was highlighted. blaKPC-2 was primarily carried by IncFII/IncR plasmids in our collection. At least two IncFII/IncR plasmid subtypes were identified, exhibiting high similarity to many previously reported blaKPC-2-bearing plasmids from different parts of China. The findings provide an expanded knowledge of the genetic characteristics of CRKP, the transmission pattern of carbapenem-resistance genes, and also the convergence of Hv-CRKP.
Project description:The evolutionary epidemiology, resistome, virulome and mobilome of thirty-one multidrug resistant Klebsiella pneumoniae clinical isolates from the northern Vila Real region of Portugal were characterized using whole-genome sequencing and bioinformatic analysis. The genomic population structure was dominated by two main sequence types (STs): ST147 (n = 17; 54.8%) and ST15 (n = 6; 19.4%) comprising four distinct genomic clusters. Two main carbapenemase coding genes were detected (blaKPC-3 and blaOXA-48) along with additional extended-spectrum β-lactamase coding loci (blaCTX-M-15, blaSHV-12, blaSHV-27, and blaSHV-187). Moreover, whole genome sequencing enabled the identification of one Klebsiella variicola KPC-3 producer isolate previously misidentified as K. pneumoniae, which in addition to the blaKPC-3 carbapenemase gene, bore the chromosomal broad spectrum β-lactamase blaLEN-2 coding gene, oqxAB and fosA resistance loci. The blaKPC-3 genes were located in a Tn4401b transposon (K. variicolan = 1; K. pneumoniaen = 2) and Tn4401d isoform (K. pneumoniaen = 28). Overall, our work describes the first report of a blaKPC-3 producing K. variicola, as well as the detection of this species during infection control measures in surveillance cultures from infected patients. It also highlights the importance of additional control measures to overcome the clonal dissemination of carbapenemase producing clones.
Project description:Carbapenem-resistant Enterobacteriaceae (CRE) are resistant to most antibiotics, making CRE infections extremely difficult to treat with available agents. Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) are predominant carbapenemases in CRE in the United States. Nacubactam is a bridged diazabicyclooctane (DBO) β-lactamase inhibitor that inactivates class A and C β-lactamases and exhibits intrinsic antibiotic and β-lactam "enhancer" activity against Enterobacteriaceae In this study, we examined a collection of meropenem-resistant K. pneumoniae isolates carrying blaKPC-2 or blaKPC-3; meropenem-nacubactam restored susceptibility. Upon testing isogenic Escherichia coli strains producing KPC-2 variants with single-residue substitutions at important Ambler class A positions (K73, S130, R164, E166, N170, D179, K234, E276, etc.), the K234R variant increased the meropenem-nacubactam MIC compared to that for the strain producing KPC-2, without increasing the meropenem MIC. Correspondingly, nacubactam inhibited KPC-2 (apparent Ki [Ki app] = 31 ± 3 μM) more efficiently than the K234R variant (Ki app = 270 ± 27 μM) and displayed a faster acylation rate (k2/K), which was 5,815 ± 582 M-1 s-1 for KPC-2 versus 247 ± 25 M-1 s-1 for the K234R variant. Unlike avibactam, timed mass spectrometry revealed an intact sulfate on nacubactam and a novel peak (+337 Da) with the K234R variant. Molecular modeling of the K234R variant showed significant catalytic residue (i.e., S70, K73, and S130) rearrangements that likely interfere with nacubactam binding and acylation. Nacubactam's aminoethoxy tail formed unproductive interactions with the K234R variant's active site. Molecular modeling and docking observations were consistent with the results of biochemical analyses. Overall, the meropenem-nacubactam combination is effective against carbapenem-resistant K. pneumoniae Moreover, our data suggest that β-lactamase inhibition by nacubactam proceeds through an alternative mechanism compared to that for avibactam.
Project description:BackgroundColistin resistance in Klebsiella pneumoniae typically involves inactivation or mutations of chromosomal genes mgrB, pmrAB or phoPQ, but data regarding consequent modifications of LPS are limited.ObjectivesTo examine the sequences of chromosomal loci implicated in colistin resistance and the respective LPS-derived lipid A profiles using 11 pairs of colistin-susceptible and -resistant KPC-producing K. pneumoniae clinical strains.MethodsThe strains were subjected to high-throughput sequencing with Illumina HiSeq. The mgrB gene was amplified by PCR and sequenced. Lipid profiles were determined using MALDI-TOF MS.ResultsAll patients were treated with colistimethate prior to the isolation of colistin-resistant strains (MIC >2 mg/L). Seven of 11 colistin-resistant strains had deletion or insertional inactivation of mgrB. Three strains, including one with an mgrB deletion, had non-synonymous pmrB mutations associated with colistin resistance. When analysed by MALDI-TOF MS, all colistin-resistant strains generated mass spectra containing ions at m/z 1955 and 1971, consistent with addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A, whereas only one of the susceptible strains displayed this lipid A phenotype.ConclusionsThe pathway to colistin resistance in K. pneumoniae primarily involves lipid A modification with Ara4N in clinical settings.