Project description:Epigenetic mechanisms such as chromatin histone H3 lysine methylation and acetylation have been implicated in diabetic vascular complications. However, histone modification profiles at pathologic genes associated with diabetic nephropathy in vivo and their regulation by the angiotensin II type 1 receptor (AT1R) are not clear. Here we tested whether treatment of type 2 diabetic db/db mice with the AT1R blocker losartan not only ameliorates diabetic nephropathy, but also reverses epigenetic changes. As expected, the db/db mice had increased blood pressure, mesangial hypertrophy, proteinuria, and glomerular expression of RAGE and PAI-1 vs. control db/+ mice. This was associated with increased RNA polymerase II recruitment and permissive histone marks as well as decreased repressive histone marks at these genes, and altered expression of relevant histone modification enzymes. Increased MCP-1 mRNA levels were not associated with such epigenetic changes, suggesting post-transcriptional regulation. Losartan attenuated key parameters of diabetic nephropathy and gene expression, and reversed some but not all the epigenetic changes in db/db mice. Losartan also attenuated increased H3K9/14Ac at RAGE, PAI-1, and MCP-1 promoters in mesangial cells cultured under diabetic conditions. Our results provide novel information about the chromatin state at key pathologic genes in vivo in diabetic nephropathy mediated in part by AT1R. Thus, combination therapies targeting epigenetic regulators and AT1R could be evaluated for more effective treatment of diabetic nephropathy.
Project description:One of the commonest causes of end-stage renal disease is diabetic kidney disease (DKD). Renal fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins in glomerular basement membranes and the tubulointerstitium, is the final manifestation of DKD. The TGF-β pathway triggers epithelial-to-mesenchymal transition (EMT), which plays a key role in the accumulation of ECM proteins in DKD. DCCT/EDIC studies have shown that DKD often persists and progresses despite glycemic control in diabetes once DKD sets in due to prior exposure to hyperglycemia called "metabolic memory." These imply that epigenetic factors modulate kidney gene expression. There is evidence to suggest that in diabetes and hyperglycemia, epigenetic histone modifications have a significant effect in modulating renal fibrotic and ECM gene expression induced by TGF-β1, as well as its downstream profibrotic genes. Histone modifications are also implicated in renal fibrosis through its ability to regulate the EMT process triggered by TGF-β signaling. In view of this, efforts are being made to develop HAT, HDAC, and HMT inhibitors to delay, stop, or even reverse DKD. In this review, we outline the latest advances that are being made to regulate histone modifications involved in DKD.
Project description:AimThe aim of the study was to investigate the potential role of BMP6 in TGF-beta1-mediated changes in HK-2 cells.MethodsBMP6 was purified via heparin affinity and reverse phase liquid chromatography. The purity, specificity, and bioactivity of BMP6 were determined by SDS-PAGE, Western blot assays, and the induction of alkaline phosphatase (ALP) activity, respectively. Cell proliferation, morphology, and expression levels of alpha-SMA and E-cadherin were assessed by cell viability, microscopy, and Western blot assays, respectively. In addition, cell adhesion abilities were determined by counting the number of attached cells. The expression of fibronectin, collagen IV, matrix metalloproteinases 2 (MMP-2), and tissue inhibitors of matrix metalloproteinases 2 (TIMP-2) were analyzed using RT-PCR. MMP-2 activity was analyzed by zymography, whereas the activation of the MAPKs and Smad signaling were analyzed using Western blot assays and a reporter gene assay, respectively.ResultsOur results indicated that recombinant BMP6 induced ALP activity in a dose-dependent and time-course-dependent manner. Treatment with TGF-beta1 reduced both the cell proliferation and the expression of E-cadherin, induced a morphological transformation, decreased the expression and activity of MMP-2, and increased the expression levels of alpha-SMA, fibronectin, and TIMP-2 in HK-2 cells. All of these effects were inhibited when cells were treated with TGF-beta1 in combination with rhBMP6, whereas rhBMP6 alone demonstrated no such effect. Treatment with TGF-beta1, rhBMP6, or a combination of both had no effect on the expression of collagen IV. In addition, the administration of rhBMP6 prevented the enhanced adhesion behavior triggered by TGF-beta1. Furthermore, the addition of rhBMP6 abrogated the JNK and Smad2/3 signaling that was activated by TGF-beta1.ConclusionBMP6 ameliorated the TGF-beta1-induced changes in HK-2 cells. The suppression of TGF-beta1-mediated JNK and Smad2/3 signaling activation were implicated in these effects.Acta Pharmacologica Sinica (2009) 30: 994-1000; doi: 10.1038/aps.2009.56; published online 22 June 2009.
Project description:Idiopathic pulmonary fibrosis is characterized by excessive deposition of collagen in the lung, leading to chronically impaired gas exchange and death1-3. Oxidative stress is believed to be critical in this disease pathogenesis4-6, although the exact mechanisms remain enigmatic. Protein S-glutathionylation (PSSG) is a post-translational modification of proteins that can be reversed by glutaredoxin-1 (GLRX)7. It remains unknown whether GLRX and PSSG play a role in lung fibrosis. Here, we explored the impact of GLRX and PSSG status on the pathogenesis of pulmonary fibrosis, using lung tissues from subjects with idiopathic pulmonary fibrosis, transgenic mouse models and direct administration of recombinant Glrx to airways of mice with existing fibrosis. We demonstrate that GLRX enzymatic activity was strongly decreased in fibrotic lungs, in accordance with increases in PSSG. Mice lacking Glrx were far more susceptible to bleomycin- or adenovirus encoding active transforming growth factor beta-1 (AdTGFB1)-induced pulmonary fibrosis, whereas transgenic overexpression of Glrx in the lung epithelium attenuated fibrosis. We furthermore show that endogenous GLRX was inactivated through an oxidative mechanism and that direct administration of the Glrx protein into airways augmented Glrx activity and reversed increases in collagen in mice with TGFB1- or bleomycin-induced fibrosis, even when administered to fibrotic, aged animals. Collectively, these findings suggest the therapeutic potential of exogenous GLRX in treating lung fibrosis.
Project description:BackgroundCardiac fibrosis (CF) is associated with increased ventricular stiffness and diastolic dysfunction and is an independent predictor of long-term clinical outcomes of patients with heart failure (HF). We previously showed that the matricellular CCN5 protein is cardioprotective via its ability to inhibit CF and preserve cardiac contractility.ObjectivesThis study examined the role of CCN5 in human heart failure and tested whether CCN5 can reverse established CF in an experimental model of HF induced by pressure overload.MethodsHuman hearts were obtained from patients with end-stage heart failure. Extensive CF was induced by applying transverse aortic constriction for 8 weeks, which was followed by adeno-associated virus-mediated transfer of CCN5 to the heart. Eight weeks following gene transfer, cellular and molecular effects were examined.ResultsExpression of CCN5 was significantly decreased in failing hearts from patients with end-stage heart failure compared to nonfailing hearts. Trichrome staining and myofibroblast content measurements revealed that the established CF had been reversed by CCN5 gene transfer. Anti-CF effects of CCN5 were associated with inhibition of the transforming growth factor beta signaling pathway. CCN5 significantly inhibited endothelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation, which are 2 critical processes for CF progression, both in vivo and in vitro. In addition, CCN5 induced apoptosis in myofibroblasts, but not in cardiomyocytes or fibroblasts, both in vivo and in vitro. CCN5 provoked the intrinsic apoptotic pathway specifically in myofibroblasts, which may have been due the ability of CCN5 to inhibit the activity of NFκB, an antiapoptotic molecule.ConclusionsCCN5 can reverse established CF by inhibiting the generation of and enhancing apoptosis of myofibroblasts in the myocardium. CCN5 may provide a novel platform for the development of targeted anti-CF therapies.
Project description:Epigenetic dysregulation plays a crucial role in cardiovascular diseases. Previously, we reported that acetyltransferase p300 (ATp300) inhibitor L002 prevents hypertension-induced cardiac hypertrophy and fibrosis in a murine model. In this short communication, we show that treatment of hypertensive mice with ATp300-specific small molecule inhibitor L002 or C646 reverses hypertension-induced left ventricular hypertrophy, cardiac fibrosis and diastolic dysfunction, without reducing elevated blood pressures. Biochemically, treatment with L002 and C646 also reverse hypertension-induced histone acetylation and myofibroblast differentiation in murine ventricles. Our results confirm and extend the role of ATp300, a major epigenetic regulator, in the pathobiology of cardiac hypertrophy and fibrosis. Most importantly, we identify the efficacies of ATp300 inhibitors C646 and L002 in reversing hypertension-induced cardiac hypertrophy and fibrosis, and discover new anti-hypertrophic and anti-fibrotic candidates.
Project description:Introduction Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis.Methods Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed.Results Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis.Conclusion Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.
Project description:Identifying and resolving molecular complexities underlying chronic neuropathic pain is a significant challenge. Among the numerous classes of histone deacetylases, Class I (HDAC 1-3) and Class III (sirtuins) have been best studied in experimental pain models where inhibitor pre-treatments but not post-treatments abrogate the development of pain-related behaviors. Post-treatment here in week 3 with less well-studied Class IIa HDAC4/5 selective inhibitor LMK235 diminishes the trigeminal ganglia increases of HDAC5 RNA and protein in two chronic orofacial neuropathic pain models to levels measured in naïve mice at week 10 post-model induction. HDAC4 RNA reported in lower limb inflammatory pain models is not evident in the trigeminal models. Many other gene alterations persisting at week 10 in the trigeminal ganglia (TG) are restored to naïve levels in mice treated with LMK235. Important pain-related upregulated genes Hoxc8,b9,d8; P2rx4, Cckbr, growth hormone (Gh), and schlafen (Slfn4) are greatly reduced in LMK235-treated mice. Fold increase in axon regeneration/repair genes Sostdc1, TTr, and Folr1 after injury are doubled by LMK235 treatment. LMK235 reduces the excitability of trigeminal ganglia neurons in culture isolated from nerve injured mice compared to vehicle-treated controls, with no effect on neurons from naïve mice. Electrophysiological characterization profile includes a shift where ∼20% of the small neurons recorded under LMK235-treated conditions are high threshold, whereas none of the neurons under control conditions have high thresholds. LMK235 reverses long-standing mechanical and cold hypersensitivity in chronic trigeminal neuropathic pain models in males and females (5,10 mg/kg), preventing development of anxiety- and depression-like behaviors. PERSPECTIVE: Data here support HDAC5 as key epigenetic factor in chronic trigeminal neuropathic pain persistence, validated with the study of RNA alterations, TG neuronal excitability, and pain-related behaviors. HDAC5 inhibitor given in week 3 restores RNA balance at 10 weeks, while upregulation remains for response to wound healing and chronic inflammation RNAs.
Project description:BackgroundRenal fibrosis is a serious condition that results in the development of chronic kidney diseases. The MEN1 gene is an epigenetic regulator that encodes the menin protein and its role in kidney tissue remains unclear.MethodsKidney histology was examined on paraffin sections stained with hematoxylin-eosin staining. Masson's trichrome staining and Sirius red staining were used to analyze renal fibrosis. Gene and protein expression were determined by quantitative real-time PCR (qPCR) and Western blot, respectively. Immunohistochemistry staining in the kidney tissues from mice or patients was used to evaluate protein levels. Flow cytometry was used to analyze the cell cycle distributions and apoptosis. RNA-sequencing was performed for differential expression genes in the kidney tissues of the Men1f/f and Men1∆/∆ mice. Chromatin immunoprecipitation sequencing (ChIP-seq) was carried out for identification of menin- and H3K4me3-enriched regions within the whole genome in the mouse kidney tissue. ChIP-qPCR assays were performed for occupancy of menin and H3K4me3 at the gene promoter regions. Luciferase reporter assay was used to detect the promoter activity. The exacerbated unilateral ureteral obstruction (UUO) models in the Men1f/f and Men1∆/∆ mice were used to assess the pharmacological effects of rh-HGF on renal fibrosis.ResultsThe expression of MEN1 is reduce in kidney tissues of fibrotic mouse and human diabetic patients and treatment with fibrotic factor results in the downregulation of MEN1 expression in renal tubular epithelial cells (RTECs). Disruption of MEN1 in RTECs leads to high expression of α-SMA and Collagen 1, whereas MEN1 overexpression restrains epithelial-to-mesenchymal transition (EMT) induced by TGF-β treatment. Conditional knockout of MEN1 resulted in chronic renal fibrosis and UUO-induced tubulointerstitial fibrosis (TIF), which is associated with an increased induction of EMT, G2/M arrest and JNK signaling. Mechanistically, menin recruits and increases H3K4me3 at the promoter regions of hepatocyte growth factor (HGF) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (Adamts5) genes and enhances their transcriptional activation. In the UUO mice model, exogenous HGF restored the expression of Adamts5 and ameliorated renal fibrosis induced by Men1 deficiency.ConclusionsThese findings demonstrate that MEN1 is an essential antifibrotic factor in renal fibrogenesis and could be a potential target for antifibrotic therapy.