Project description:BackgroundSalmonella enterica subspecies enterica serovar Typhimurium is a gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated.Methodology/principal findingsTwenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B(12) uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain.Conclusions/significanceIn this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.
Project description:Salmonella survives and replicates in host cells by using a type III secretion system to evade host immune defenses. The innate immune system plays an important role as a first line of defense against pathogens and is mediated in part by Toll-like receptors (TLRs); however, the infection dynamics of Salmonella enterica serovar Typhimurium within macrophages stimulated with TLR ligands is poorly understood. We studied the infection dynamics of Salmonella in murine macrophages previously exposed to TLR ligands and report that treatment of macrophages with four different TLR agonists resulted in their increased phagocytic capacity toward Salmonella but not fluorescent microspheres. Further analysis revealed that the intracellular replication of Salmonella was enhanced in TLR-stimulated macrophages in a manner requiring a functional type III secretion system and enhanced transcriptional activity of the sseA virulence gene operon. Studies of mice that normally resolve an acute primary infection with Salmonella revealed that pretreatment of animals with CpG DNA had a detrimental effect on disease outcome. CpG-treated mice infected with Salmonella all succumbed to infection and had higher bacterial loads in the spleen than did control animals. These data suggest that Salmonella can exploit macrophages activated via the innate immune system for increased intracellular survival.
Project description:Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S Typhimurium delays epithelial cell turnover in the intestine.
Project description:Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system.
Project description:Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. Previous bioinformatic studies have mainly focused on the recognition of polyadenylation sites (PASs) in a given genomic sequence, which is a binary classification problem. Recently, computational methods for predicting the usage level of alternative PASs in the same gene have been proposed. However, all of them cast the problem as a non-quantitative pairwise comparison task and do not take the competition among multiple PASs into account. To address this, here we propose a deep learning architecture, Deep Regulatory Code and Tools for Alternative Polyadenylation (DeeReCT-APA), to quantitatively predict the usage of all alternative PASs of a given gene. To accommodate different genes with potentially different numbers of PASs, DeeReCT-APA treats the problem as a regression task with a variable-length target. Based on a convolutional neural network-long short-term memory (CNN-LSTM) architecture, DeeReCT-APA extracts sequence features with CNN layers, uses bidirectional LSTM to explicitly model the interactions among competing PASs, and outputs percentage scores representing the usage levels of all PASs of a gene. In addition to the fact that only our method can quantitatively predict the usage of all the PASs within a gene, we show that our method consistently outperforms other existing methods on three different tasks for which they are trained: pairwise comparison task, highest usage prediction task, and ranking task. Finally, we demonstrate that our method can be used to predict the effect of genetic variations on APA patterns and sheds light on future mechanistic understanding in APA regulation. Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo.
Project description:The genetic basis for the host adaptation of Salmonella serotypes is currently unknown. We have explored a new strategy to identify Salmonella enterica serotype Typhimurium (S. typhimurium) genes involved in host adaptation, by comparing the virulence of 260 randomly generated signature-tagged mutants during the oral infection of mice and calves. This screen identified four mutants, which were defective for colonization of only one of the two host species tested. One mutant, which only displayed a colonization defect during the infection of mice, was further characterized. During competitive infection experiments performed with the S. typhimurium wild type, the mutant was defective for colonization of murine Peyer's patches but colonized bovine Peyer's patches at the wild-type level. No difference in virulence between wild type and mutant was observed when calves were infected orally with 10(10) CFU/animal. In contrast, the mutant possessed a sixfold increase in 50% lethal morbidity dose when mice were infected orally. The transposon in this mutant was inserted in a 2.9-kb pathogenicity islet, which is located between uvrB and yphK on the S. typhimurium chromosome. This pathogenicity islet contained a single gene, termed slrP, with homology to ipaH of Shigella flexneri and yopM of Yersinia pestis. These data show that comparative screening of signature-tagged mutants in two animal species can be used for scanning the S. typhimurium genome for genes involved in host adaptation.
Project description:An increasingly apparent role of noncoding RNA (ncRNAs) is to coordinate gene expression during environmental stress. A mounting body of evidence implicates small RNAs (sRNAs) as key drivers of Salmonella stress survival. Generally thought to be 50-500 nucleotides in length and to occur in intergenic regions, sRNAs typically regulate protein expression through base pairing with mRNA targets. In this work, through employing a refined definition of sRNAs allowing for shorter sequences and sRNA loci to overlap with annotated protein-coding gene loci, we have identified 475 previously unannotated sRNAs that are significantly differentially expressed during carbon starvation (C-starvation). Northern blotting and quantitative RT-PCRs confirm the expressions and identities of several of these novel sRNAs, and our computational analyses find the majority to be highly conserved and structurally related to known sRNAs. Importantly, we show that deletion of one of the sRNAs dynamically expressed during C-starvation, sRNA4130247, significantly impairs the Salmonella C-starvation response (CSR), confirming its involvement in the Salmonella CSR. In conclusion, the work presented here provides the first-ever characterization of intragenic sRNAs in Salmonella, experimentally confirms that sRNAs dynamically expressed during the CSR are directly involved in stress survival, and more than doubles the Salmonella enterica sRNAs described to date.
Project description:Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA generates transcript isoforms by utilizing various polyadenylation sites (PASs) from the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.
Project description:The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.
Project description:Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds.