Project description:BackgroundThe TRIB1 locus has been linked to hepatic triglyceride metabolism in mice and to plasma triglycerides and coronary artery disease in humans. The lipid-associated single nucleotide polymorphisms (SNPs), identified by genome-wide association studies, are located ≈30 kb downstream from TRIB1, suggesting complex regulatory effects on genes or pathways relevant to hepatic triglyceride metabolism. The goal of this study was to investigate the functional relationship between common SNPs at the TRIB1 locus and plasma lipid traits.Methods and resultsCharacterization of the risk locus reveals that it encompasses a gene, TRIB1-associated locus (TRIBAL), composed of a well-conserved promoter region and an alternatively spliced transcript. Bioinformatic analysis and resequencing identified a single SNP, rs2001844, within the promoter region that associates with increased plasma triglycerides and reduced high-density lipoprotein cholesterol and coronary artery disease risk. Further, correction for triglycerides as a covariate indicated that the genome-wide association studies association is largely dependent on triglycerides. In addition, we show that rs2001844 is an expression trait locus (eQTL) for TRIB1 expression in blood and alters TRIBAL promoter activity in a reporter assay model. The TRIBAL transcript has features typical of long noncoding RNAs, including poor sequence conservation. Modulation of TRIBAL expression had limited impact on either TRIB1 or lipid regulatory genes mRNA levels in human hepatocyte models. In contrast, TRIB1 knockdown markedly increased TRIBAL expression in HepG2 cells and primary human hepatocytes.ConclusionsThese studies demonstrate an interplay between a novel locus, TRIBAL, and TRIB1. TRIBAL is located in the genome-wide association studies identified risk locus, responds to altered expression of TRIB1, harbors a risk SNP that is an eQTL for TRIB1 expression, and associates with plasma triglyceride concentrations.
Project description:Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
Project description:BackgroundA chromosomal locus at 4q32.1 has been genome-wide significantly associated with coronary artery disease risk. The locus encompasses GUCY1A3, which encodes the α1 subunit of the soluble guanylyl cyclase (sGC), a key enzyme in the nitric oxide/cGMP signaling pathway. The mechanism linking common variants in this region with coronary risk is not known.MethodsGene expression and protein expression were analyzed with quantitative polymerase chain reaction and immunoblotting, respectively. Putative allele-specific transcription factors were identified with in silico analyses and validated via allele-specific quantification of antibody-precipitated chromatin fractions. Regulatory properties of the lead risk variant region were analyzed with reporter gene assays. To assess the effect of zinc finger E box-binding homeobox 1 transcription factor (ZEB1), siRNA-mediated knockdown and overexpression experiments were performed. Association of GUCY1A3 genotype and cellular phenotypes was analyzed with vascular smooth muscle cell migration assays and platelet aggregation analyses.ResultsWhole-blood GUCY1A3 mRNA levels were significantly lower in individuals homozygous for the lead (rs7692387) risk variant. Likewise, reporter gene assays demonstrated significantly lower GUCY1A3 promoter activity for constructs carrying this allele. In silico analyses located a DNase I hypersensitivity site to rs7692387 and predicted binding of the transcription factor ZEB1 rather to the nonrisk allele, which was confirmed experimentally. Knockdown of ZEB1 resulted in more profound reduction of nonrisk allele promoter activity and a significant reduction of endogenous GUCY1A3 expression. Ex vivo-studied platelets from homozygous nonrisk allele carriers displayed enhanced inhibition of ADP-induced platelet aggregation by the nitric oxide donor sodium nitroprusside and the phosphodiesterase 5 inhibitor sildenafil compared with homozygous risk allele carriers. Moreover, pharmacological stimulation of sGC led to reduced migration only in vascular smooth muscle cells homozygous for the nonrisk allele. In the Hybrid Mouse Diversity Panel, higher levels of GUCY1A3 expression correlated with less atherosclerosis in the aorta.ConclusionsRs7692387 is located in an intronic site that modulates GUCY1A3 promoter activity. The transcription factor ZEB1 binds preferentially to the nonrisk allele, leading to an increase in GUCY1A3 expression, higher sGC levels, and higher sGC activity after stimulation. Finally, human and mouse data link augmented sGC expression to lower risk of atherosclerosis.
Project description:The human LncRNA microarray analysis of the 6 plasma samples from Coronary Artery Disease patients and non Coronary Artery Disease Agilent Feature Extraction software (version 11.0.1.1) was used to analyze acquired array images. Quantile normalization was performed using Expander6 and subsequent data processing was performed using the GeneSpring GX v11.5.1 software package (Agilent Technologies). After low intensity filtering, LncRNAs and mRNAs that at least 2 out of 12 samples have flags in Present or Marginal (“All Targets Value”) were chosen for quantile normalization and further data analysis. Differentially expressed LncRNAs and mRNAs with statistical significance were identified through Volcano Plot filtering. Pathway analysis and GO analysis were applied to determine the roles of these differentially expressed mRNAs played in these biological pathways or GO terms. Finally, Hierarchical Clustering was performed to show the distinguishable LncRNAs expression pattern among samples.
Project description:Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.
Project description:Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.
Project description:ObjectiveTriglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM.Approach and resultsPlasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53).ConclusionsIn persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma triglyceride-rich lipoproteins and cardiovascular risk in T2DM.