Unknown

Dataset Information

0

Differential co-expression analysis reveals early stage transcriptomic decoupling in alzheimer's disease.


ABSTRACT:

Background

Alzheimer's disease (AD) is one of the leading causes of death in the US and there is no validated drugs to stop, slow or prevent AD. Despite tremendous effort on biomarker discovery, existing findings are mostly individual biomarkers and provide limited insights into the transcriptomic decoupling underlying AD. We propose to explore the gene co-expression patterns in multiple AD stages, including cognitively normal (CN), early mild cognitive impairment (EMCI), late MCI and AD.

Methods

We modified traiditonal joint graphical lasso to model our asusmption that the co-expression networks in consecutive disease stages are largely similar with critical differences. In addition, we performed subsequent network comparison analysis for identification of stage specific transcriptomic decoupling. We focused our analysis on top AD-enriched pathways.

Results

We observed that 419 edges in CN, 420 edges in EMCI, 381 edges in LMCI and 250 edges in AD were frequently estimated with non zero weights. With modified JGL, the weight of all estimated edges in CN, EMCI and LMCI are zero. In AD group, 299 edges were occasionally estimated to be nonzero and the average correlation between genes was 0.0023. For co-expression change during AD progression, there are 66 pairs of genes that demonstrated a continuously decreasing or increasing co-expression from CN to EMCI, LMCI and AD.The network level clustering coefficient remains stable from CN to LMCI and then decreases significantly when progressing to AD. When evaluating edge level differences, we identified eight gene modules with continuously decreasing or increasing co-expression patterns during AD progression. Five of them shows significant changes from CN to EMCI and thus have the potential to serve system biomarkers for early screening of AD.

Conclusion

We employed a modified joint graphical lasso for estimation of co-expression networks for multiple stages of AD. Comparing with graphical lasso, our modified joint graphical lasso model accounts for the similarity in consecutive disease stages. Our results on real data set revealed five gene clusters with obvious co-expression pattern change from CN to EMCI, which could be used as potential system-level biomarkers for early screening of AD.

SUBMITTER: Upadhyaya Y 

PROVIDER: S-EPMC7118822 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential co-expression analysis reveals early stage transcriptomic decoupling in alzheimer's disease.

Upadhyaya Yurika Y   Xie Linhui L   Salama Paul P   Cao Sha S   Nho Kwangsik K   Saykin Andrew J AJ   Yan Jingwen J   Alzheimer's Disease Neuroimaging Initiative For The FT  

BMC medical genomics 20200403 Suppl 5


<h4>Background</h4>Alzheimer's disease (AD) is one of the leading causes of death in the US and there is no validated drugs to stop, slow or prevent AD. Despite tremendous effort on biomarker discovery, existing findings are mostly individual biomarkers and provide limited insights into the transcriptomic decoupling underlying AD. We propose to explore the gene co-expression patterns in multiple AD stages, including cognitively normal (CN), early mild cognitive impairment (EMCI), late MCI and AD  ...[more]

Similar Datasets

| S-EPMC4132486 | biostudies-literature
| S-EPMC3079522 | biostudies-literature
| S-EPMC2631360 | biostudies-literature
| S-EPMC8774248 | biostudies-literature
| S-EPMC8028273 | biostudies-literature
| S-EPMC7561188 | biostudies-literature
| S-EPMC5870045 | biostudies-other
| S-EPMC4300856 | biostudies-literature