Unknown

Dataset Information

0

Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na+ channel.


ABSTRACT: Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.

SUBMITTER: Abd El-Aziz TM 

PROVIDER: S-EPMC8285517 | biostudies-literature | 2021 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na<sup>+</sup> channel.

Abd El-Aziz Tarek Mohamed TM   Soares Antonio G AG   Mironova Elena E   Boiko Nina N   Kaur Amanpreet A   Archer Crystal R CR   Stockand James D JD   Berman Jonathan M JM  

Scientific reports 20210716 1


Activity of the Epithelial Na<sup>+</sup> Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activi  ...[more]

Similar Datasets

| S-EPMC8440394 | biostudies-literature
| S-EPMC6028986 | biostudies-literature
| S-EPMC3259572 | biostudies-literature
| S-EPMC6231141 | biostudies-literature
| S-EPMC3889165 | biostudies-literature
| S-EPMC7263923 | biostudies-literature
| S-EPMC5316355 | biostudies-literature
| S-EPMC10178781 | biostudies-literature
| S-EPMC9086401 | biostudies-literature
| S-EPMC9633555 | biostudies-literature