Ontology highlight
ABSTRACT: Background
Isobutanol is an attractive biofuel with many advantages. Third-generation biorefineries that convert CO2 into bio-based fuels have drawn considerable attention due to their lower feedstock cost and more ecofriendly refining process. Although autotrophic cyanobacteria have been genetically modified for isobutanol biosynthesis, there is a lack of stable and convenient strategies to improve their production.Results
In this study, we first engineered Synechococcus elongatus for isobutanol biosynthesis by introducing five exogenous enzymes, reaching a production titer of 0.126 g/L at day 20. It was then discovered that high salinity stress could result in a whopping fivefold increase in isobutanol production, with a maximal in-flask titer of 0.637 g/L at day 20. Metabolomics analysis revealed that high salinity stress substantially altered the metabolic profiles of the engineered S. elongatus. A major reason for the enhanced isobutanol production is the acceleration of lipid degradation under high salinity stress, which increases NADH. The NADH then participates in the engineered isobutanol-producing pathway. In addition, increased membrane permeability also contributed to the isobutanol production titer. A cultivation system was subsequently developed by mixing synthetic wastewater with seawater to grow the engineered cyanobacteria, reaching a similar isobutanol production titer as cultivation in the medium.Conclusions
High salinity stress on engineered cyanobacteria is a practical and feasible biotechnology to optimize isobutanol production. This biotechnology provides a cost-effective approach to biofuel production, and simultaneously recycles chemical nutrients from wastewater and seawater.
SUBMITTER: Wu XX
PROVIDER: S-EPMC8404291 | biostudies-literature | 2021 Aug
REPOSITORIES: biostudies-literature
Wu Xiao-Xi XX Li Jian-Wei JW Xing Su-Fang SF Chen Hui-Ting HT Song Chao C Wang Shu-Guang SG Yan Zhen Z
Biotechnology for biofuels 20210830 1
<h4>Background</h4>Isobutanol is an attractive biofuel with many advantages. Third-generation biorefineries that convert CO<sub>2</sub> into bio-based fuels have drawn considerable attention due to their lower feedstock cost and more ecofriendly refining process. Although autotrophic cyanobacteria have been genetically modified for isobutanol biosynthesis, there is a lack of stable and convenient strategies to improve their production.<h4>Results</h4>In this study, we first engineered Synechococ ...[more]