Unknown

Dataset Information

0

Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage.


ABSTRACT: During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. Here, we show that intracerebroventricular administration of recombinant human cerebral dopamine neurotrophic factor (rhCDNF) accelerates hemorrhagic lesion resolution, reduces peri-focal edema, and improves neurological outcomes in an animal model of collagenase-induced ICH. We demonstrate that CDNF acts on microglia/macrophages in the hemorrhagic striatum by promoting scavenger receptor expression, enhancing erythrophagocytosis and increasing anti-inflammatory mediators while suppressing the production of pro-inflammatory cytokines. Administration of rhCDNF results in upregulation of the Nrf2-HO-1 pathway, but alleviation of oxidative stress and unfolded protein responses in the perihematomal area. Finally, we demonstrate that intravenous delivery of rhCDNF has beneficial effects in an animal model of ICH and that systemic application promotes scavenging by the brain's myeloid cells for the treatment of ICH.

SUBMITTER: Tseng KY 

PROVIDER: S-EPMC9932138 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Augmenting hematoma-scavenging capacity of innate immune cells by CDNF reduces brain injury and promotes functional recovery after intracerebral hemorrhage.

Tseng Kuan-Yin KY   Stratoulias Vassilis V   Hu Wei-Fen WF   Wu Jui-Sheng JS   Wang Vicki V   Chen Yuan-Hao YH   Seelbach Anna A   Huttunen Henri J HJ   Kulesskaya Natalia N   Pang Cheng-Yoong CY   Chou Jian-Liang JL   Lindahl Maria M   Saarma Mart M   Huang Li-Chuan LC   Airavaara Mikko M   Liew Hock-Kean HK  

Cell death & disease 20230215 2


During intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH. He  ...[more]

Similar Datasets

2022-12-19 | GSE216547 | GEO
| PRJNA894196 | ENA
| S-EPMC3743539 | biostudies-literature
| S-EPMC4131760 | biostudies-literature
| S-EPMC4977111 | biostudies-literature
| S-EPMC4846589 | biostudies-literature
| S-EPMC10373350 | biostudies-literature
| S-EPMC9634162 | biostudies-literature
| S-EPMC5237112 | biostudies-literature
| S-EPMC7086015 | biostudies-literature