Genomics

Dataset Information

0

Transcriptomic and physiological responses of Bacillus cereus to organic and inorganic acid down-shocks


ABSTRACT: Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to acid down-shock to pH 5.5 set with different acidulants. When acidified with hydrochloric acid (HCl), growth was diminished, whereas 2 mM undissociated lactic acid (HL) or acetic acid (HAc) stopped growth without inactivation (bacteriostatic condition), and 15 mM undissociated HAc caused growth arrest and, finally, cell death, as reflected by a 3 to 4 log inactivation (bactericidal condition). Within the first 60 min after pH down-shock, the intracellular ATP levels of cultures shocked with HCl were increased. The bacteriostatic pH shocks did not result in increased nor decreased intracellular ATP levels, indicating that the high energy status within the stressed aerobically grown B. cereus cells could be maintained. In contrast, exposure to 15 mM undissociated HAc resulted in significant lower ATP levels, which was in accordance with the observed inactivation. The transcriptomic responses pH down-shocked cultures were studied in the same time frame. The analyses revealed general and specific responses coupled to the different phenotypes and the acidulant used. The general acid stress response, shown in all different pH shocks, involves modulation of pyruvate metabolism and an oxidative stress response. The shifts in pyruvate metabolism include induction dehydrogenases of a butanediol fermentation pathway under non-lethal acid stress conditions and of lactate, formate, and ethanol fermentation pathways under 15 mM HAc stress. Other 15 mM HAc-specific responses were induction of the alternative electron-transport systems, including cydAB, and fatty acid biosynthesis genes. Differences in gene expression for the bacteriostatic organic acid stress conditions compared to the growth-retarded inorganic stress condition indicated a more stringent oxidative stress response, including induction of an additional catalase gene and a gene encoding a Dps-like protein. Moreover, modulations in amino acid and oligopeptide transport were also found for the 2 mM HAc and HL shocks. HL-specific and HAc-specific responses both involve amino acid metabolism. Our study on the genome-wide responses of aerobically grown B. cereus pH 5.5 shocks provides a unique overview of the different responses induced by three acidulants relevant for food preservation.

ORGANISM(S): Bacillus cereus ATCC 14579 Bacillus cereus

PROVIDER: GSE15140 | GEO | 2009/09/30

SECONDARY ACCESSION(S): PRJNA114901

REPOSITORIES: GEO

Similar Datasets

2010-06-25 | E-GEOD-15140 | biostudies-arrayexpress
2010-06-25 | E-GEOD-13711 | biostudies-arrayexpress
2010-06-25 | E-GEOD-13729 | biostudies-arrayexpress
2009-11-25 | GSE13729 | GEO
2009-11-25 | GSE13711 | GEO
2010-11-01 | E-GEOD-19186 | biostudies-arrayexpress
2010-11-01 | GSE19186 | GEO
2009-09-14 | GSE12900 | GEO
2014-04-11 | E-GEOD-55051 | biostudies-arrayexpress
2010-05-05 | E-GEOD-12900 | biostudies-arrayexpress