Project description:BackgroundBone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively.ResultsThe RNA-seq data revealed gene expression changes that were consistent with the in vitro phenotypes of the cell lines, particularly in MDA-MB-231, where migration-related processes were enriched. These results were confirmed when enrichment of BMP4-induced open chromatin regions was analyzed. Interestingly, the chromatin in transcription start sites of differentially expressed genes was already open in unstimulated cells, thus enabling rapid recruitment of transcription factors to the promoters as a response to stimulation. Further analysis and functional validation identified MBD2, CBFB, and HIF1A as downstream regulators of BMP4 signaling. Silencing of these transcription factors revealed that MBD2 was a consistent activator of target genes in both cell lines, CBFB an activator in cells with reduced proliferation phenotype, and HIF1A a repressor in cells with induced migration phenotype.ConclusionsIntegrating RNA-seq and DNase-seq data showed that the phenotypic responses to BMP4 in breast cancer cell lines are reflected in transcriptomic and chromatin levels. We identified and experimentally validated downstream regulators of BMP4 signaling that relate to the different in vitro phenotypes and thus demonstrate that the downstream BMP4 response is regulated in a cell type-specific manner.
Project description:Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively.
Project description:Bone morphogenetic protein 4 (BMP4) plays an important role in cancer pathogenesis. In breast cancer, it reduces proliferation and increases migration in a cell line-dependent manner. To characterize the transcriptional mediators of these phenotypes, we performed RNA-seq and DNase-seq analyses after BMP4 treatment in MDA-MB-231 and T-47D breast cancer cells that respond to BMP4 with enhanced migration and decreased cell growth, respectively.
Project description:Histone lysine demethylases (KDMs) comprise a large class of enzymes that catalyze site-specific demethylation of lysine residues on histones and other proteins. They play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of KDMs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of 24 KDMs in breast cancer and identified associations among recurrent copy number alterations, gene expression, breast cancer subtypes, and clinical outcome. Two KDMs, KDM2A and KDM5B, had the highest frequency of genetic amplification and overexpression. Furthermore, among the 24 KDM genes, KDM2A had the highest correlation between copy number and mRNA expression, and high mRNA levels of KDM2A were significantly associated with shorter survival of breast cancer patients. KDM2A has two isoforms: the long isoform is comprised of a JmjC domain, CXXC-zinc finger, PHD zinc finger, F-box, and the AMN1 protein domain; whereas the short isoform of KDM2A lacks the N-terminal JmjC domain but contains all other motifs. Detailed characterization of KDM2A in breast cancer revealed that the short isoform of KDM2A is more abundant than the long isoform at DNA, mRNA, and protein levels in a subset of breast cancers. Furthermore, our data indicate that the short isoform of KDM2A has oncogenic potential and functions as an oncogenic isoform in a subset of breast cancers. Taken together, our findings suggest that amplification and overexpression of the KDM2A short isoform is critical in breast cancer progression.
Project description:Lung metastasis of breast cancer is closely associated with patient morbidity and mortality, which correlates with myeloid cells in the lung microenvironment. However, the heterogeneity and specificity of metastasis-associated myeloid cells have not been fully established in lung metastasis. Here, by integrating and analyzing single-cell transcriptomics, we found that myeloid subpopulations (Tppp3 + monocytes, Isg15 + macrophages, Ifit3 + neutrophils, and Il12b + DCs) play critical roles in the formation and development of the metastatic niche. Gene enrichment analyses indicate that several tumor-promoting pathways should be responsible for the process, including angiogenesis (Anxa1 and Anxa2 by Tppp3 + monocytes), immunosuppression (Isg15 and Cxcl10 by Isg15 + macrophages; Il12b and Ccl22 by Il12b + DCs), and tumor growth and metastasis (Isg15 and Isg20 by Ifit3 + neutrophils). Furthermore, we have validated these subpopulations in lung microenvironment of MMTV-PyVT transgenic mice and verified their association with poor progression of human breast cancer. Also, our results elucidated a crosstalk network among four myeloid subpopulations by cell-cell communication analysis. This study, therefore, highlights the crucial role of myeloid cells in lung metastasis and provides insights into underlying molecular mechanisms, which pave the way for therapeutic interventions in breast cancer metastasis to lung.
Project description:More women are diagnosed with breast cancer (BC) than any other type of cancer. Although large-scale efforts have completely redefined cancer, a cure remains unattainable. In that respect, new molecular functions of the cell should be investigated, such as post-transcriptional regulation. RNA-binding proteins (RBPs) are emerging as critical post-transcriptional modulators of tumorigenesis, but only a few have clear roles in BC. To recognize new putative breast cancer RNA-binding proteins, we performed integrated in silico analyses of all human RBPs (n = 1392) in three major cancer databases and identified five putative BC RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3), which showed robust oncogenic features related to their genomic alterations, immunohistochemical changes, high interconnectivity with cancer driver genes (CDGs), and tumor vulnerabilities. Interestingly, some of these RBPs have never been studied in BC, but their oncogenic functions have been described in other cancer types. Subsequent analyses revealed PUF60 and SF3A3 as central elements of a spliceosome-related cluster involving RBPs and CDGs. Further research should focus on the mechanisms by which these proteins could promote breast tumorigenesis, with the potential to reveal new therapeutic pathways along with novel drug-development strategies.
Project description:We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.
Project description:Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.
Project description:AimThyroid cancer is the most common endocrine cancer, the incidence rate has continuously increased worldwide. However, there are still lack of effective molecular biomarkers for the diagnosis and treatment of the disease. The study was conducted to identify driver genes that may serve as potential biomarkers for the disease.MethodsThe computational tools oncodriveCLUST, oncodriveFM, icages and drgap were used to detect driver genes in thyroid cancer using somatic mutations from The Cancer Genome Atlas database. Integrated analyses were performed on the driver genes using multiomics data from the TCGA database.ResultsA set of 291 driver genes were identified in thyroid cancer. BRAF, NRAS, HRAS, OTUD4, EIF1AX were the top 5 frequently mutated genes in thyroid cancer. The weighted gene co-expression network analysis identified 4 coexpression modules. The modules 1-3 were significantly associated with patients' tumor size, residual tumor, cancer stage, distant metastasis and multifocality. SEC24B, MET and ITGAL were the hub genes in the modules 1-3 respectively. Hierarchical clustering analysis of the 20 driver genes with the most frequent copy number changes revealed 3 clusters of PRAD patients. Cluster 1 tumors exhibited significantly older age, tumor size, cancer stages, and poorer prognosis than cluster 2 and 3 tumors. 16 genes were significantly associated with number of lymph nodes, tumor size and pathologic stage, such as IL7 R, IRS1, PTK2B, MAP3K3 and FGFR2.ConclusionsThe set of cancer genes and subgroups of patients shed insight on the tumorigenesis of thyroid cancer and open up avenues for developing prognostic biomarkers and driver gene-targeted therapies in thyroid cancer.