Project description:RNA sequencing study on prostate cancer (PRC) cohort for small RNA characterization across biofluids, tissue types and isolation techniques.
Project description:Intracellular and extracellular vesicle-contained microRNAs were profiled by next-generation sequencing from prostate cancer patient cells, tissues and serum.
Project description:Small non-coding RNA profiling of urine exosomal total RNA from patients with or without prostate cancer were performed using Affymetrix GeneChip miRNA 4.0 to identify small non-coding RNA profile that can be used for prostate cancer diagnosis.
Project description:Small non-coding RNA profiling of urine exosomal total RNA from patients with or without prostate cancer were performed using Affymetrix miRNA Gene-Chip 4.0 to identify small non-coding RNA proflie that can be used for prostate cancer diagnosis.
Project description:BACKGROUND: Prostate cancer is the most frequently diagnosed cancer among men in the United States. In contrast, cancer of the seminal vesicle is exceedingly rare, despite that the prostate and seminal vesicle share similar histology, secretory function, androgen dependency, blood supply, and (in part) embryonic origin. We hypothesized that gene-expression differences between prostate and seminal vesicle might inform mechanisms underlying the higher incidence of prostate cancer. METHODS: Whole-genome DNA microarrays were used to profile gene expression of 11 normal prostate and 7 seminal vesicle specimens (including 6 matched pairs) obtained from radical prostatectomy. Supervised analysis was used to identify genes differentially expressed between normal prostate and seminal vesicle, and this list was then cross-referenced to genes differentially expressed between normal and cancerous prostate. Expression patterns of selected genes were confirmed by immunohistochemistry using a tissue microarray. We identified 32 genes that displayed a highly statistically-significant expression pattern with highest levels in seminal vesicle, lower levels in normal prostate, and lowest levels in prostate cancer. Among these genes was the known candidate prostate tumor suppressor GSTP1 (involved in xenobiotic detoxification). The expression pattern of GSTP1 and four other genes, ABCG2 (xenobiotic transport), CRABP2 (retinoic acid signaling), GATA3 (lineage-specific transcription) and SLPI (immune response), was confirmed by immunohistochemistry. CONCLUSIONS: Our findings identify candidate prostate cancer genes whose reduced expression in prostate (compared to seminal vesicle) may be permissive to prostate cancer initiation. Such genes and their pathways may inform mechanisms of prostate carcinogenesis, and suggest new opportunities for prostate cancer prevention. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Disease State: normal prostate vs normal seminal vesicle sample Individual Keywords: Logical Set cDNA microarrays from the Stanford Functional Genomics Facility were used for expression profiling of 11 normal prostate and 7 seminal vesicle specimens (6 of which were matched pairs), against a universal RNA reference. Extracted expression ratios were normalized by array then mean centered by gene, and expression differences between normal prostate and seminal vesicle identified using Significance Analysis of Microarrays (SAM).
Project description:Full title: Comprehensive Characterization of Three-Dimensional Models for Prostate Cancer Growth and Invasion in Laminin-rich Extracellular Matrix Prostate Cancer (PrCa) cells undergo acinar morphogenesis and spheroid formation in three-dimensional (3D) culture, supported by laminin-rich extracellular matrix (lrECM, Matrigel). We developed miniaturized 3D model systems that facilitate investigation of morphogenesis and invasion of normal and PrCa cell lines in lrECM. Primary and non-transformed cell lines formed round structures with strong cell-cell contacts and epithelial polarization, lumen and a complete basal lamina (BL). In contrast, most PrCa cell lines formed either defective, “mass” spheroids with incomplete BL, or invasive “stellate” structures. The bioinformatic analyses of genome-wide mRNA expression data revealed massive alteration of key functional and signaling pathways in 3D cultures, with lipid and steroid metabolism, epigenetic reprogramming, and differentiation-related transcription factors induced across all cell lines by lrECM. In invasive cells, AKT, PI3Kinase, mTOR, and hedgehog signaling pathways were most highly activated, validated by small molecule inhibitors compounds specifically targeting key regulatory molecules. Compounds against AKT and PI3kinase pathways were significantly more effective in invasive cells, compared to mass or round/normal phenotype spheroids, and monolayer culture. A severe morphologic conversion was observed in PC-3 and PC-3M cells, transforming initially round, normal-appearing epithelial spheroids into rapidly invading cell masses. Markers for EMT (epithelial-mesenchymal transition) were highly expressed already in early stage, round spheroids prior to invasive conversion, and were not further increased in invasive cells. This indicates that PrCa cells can display extraordinary plasticity. EMT may be involved in providing a metastable genotype that allows morphological transformation, but is not be required for invasive processes themselves. Total RNA was obtained from non-transformed prostate epithelial cells and prostate cancer cells cultured in monolayer and three-dimensional laminin-rich extracellular matrix (growth factor-reduced Matrigel).