Project description:"Experiment looks to identify metabolites in the major metabolic pathways, i.e. glycolysis, tca, urea cycle and ppp along with amino acids."
Project description:Macro-autophagy is a highly conserved catabolic process among eukaryotes affecting macrophages. This work studies the genetic regulatory network involving the interplay between autophagy and macrophage polarization (activation). Autophagy-related genes (Atgs) and differentially expressed genes (DEGs) of macrophage polarization (M1-M2) were predicted, and their regulatory networks constructed. Naïve (M0) mouse bone marrow-derived monocytes were differentiated into M1 and M2a. Validation of the targets of Smad1, LC3A and LC3B, Atg16L1, Atg7, IL-6, CD68, Arg-1, and Vamp7 was performed in vitro. Immunophenotyping by flow cytometry revealed three macrophage phenotypes: M0 (IL-6 + /CD68 +), M1 (IL-6 + /CD68 + /Arg-1 +), and M2a (CD68 + /Arg-1). Confocal microscopy revealed increased autophagy in both M1 and M2a and a significant increase in the pre-autophagosomes size and number. Bafilomycin A increased the expression of CD68 and Arg-1 in all cell lineages. In conclusion, our approach predicted the protein targets mediating the interplay between autophagy and macrophage polarization. We suggest that autophagy reprograms macrophage polarization via CD68, arginase 1, Atg16L1-1, and Atg16L1-3. The current findings provide a foundation for the future use of macrophages in immunotherapy of different autoimmune disorders.
Project description:While aging is well established as an important risk factor for the development and progression of atherosclerosis, the underlying molecular mechanisms of this relationship remain poorly defined, and its role in atherosclerosis regression is unknown. We investigated the response of bone marrow-derived macrophages isolated from old and young mice to atherogenic aggregated LDL.
Project description:Macrophages are highly plastic immune cells that are capable of adopting a wide array of functional phenotypes in response to environmental stimuli. The changes in macrophage function are often supported and regulated by changes in cellular metabolism. Capturing a comprehensive picture of metabolism is vital for understanding the role of metabolic rewiring in the immune response. Here we present a method for systematically quantifying the abundance of metabolites and lipids in primary murine bone marrow derived macrophages (BMDMs). This method simultaneously extracts polar metabolites and lipids from BMDMs using a rapid two-phase extraction procedure. The polar metabolite fraction and lipid fraction are subsequently analyzed by separate liquid chromatography-mass spectrometry (LC-MS) methods for optimized coverage and quantification. This allows for a comprehensive characterization of cellular metabolism that can be used to understand the impact of a variety of environmental stimuli on macrophage metabolism and function.
Project description:Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a process called erythrophagocytosis (EP). This critical mechanism preserves systemic heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling. Although extensive work has demonstrated the various effects on macrophage metabolic reprogramming by stimulation with proinflammatory cytokines, little is known about the impact of EP on the macrophage metabolome and proteome. Thus, we performed mass spectrometry-based metabolomics and proteomics analyses of mouse bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs. Further, metabolomics was performed on BMDMs incubated with free IgG to ensure that changes to macrophage metabolism were due to opsonized RBCs and not to free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs in the presence and absence of IgG-coated RBCs to assess the flux of glucose through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS, and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis and enhanced PPP activation. Notably, we show that it is fueled by glucose derived from the macrophages themselves or from the extracellular media prior to EP, but not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative burst, leading to the generation of reactive oxygen species necessary to promote digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-β, respectively. Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites (α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid (ALA) synthase and arginase activity as indicated by significant accumulations of ALA and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic reprogramming of BMDMs does not occur following exposure to IgG alone. In conclusion, we show that EP reprograms macrophage metabolism and modifies macrophage polarization.
Project description:Conditioned medium (CM) from bone marrow derived macrophages untreated or treated with LPS was collected and filtered through a 0.22-μm filter. The filtered CM was sequentially fractionated with 50-kDa and 100-kDa Amicon filters. The 50–100 kDa fraction of CM was analyzed by mass spectrometry.
Project description:Here, we describe an optimized protocol to analyze murine bone-marrow-derived macrophages using label-free data-independent acquisition (DIA) proteomics. We provide a complete step-by-step protocol describing sample preparation utilizing the S-Trap approach for on-column digestion and peptide purification. We then detail mass spectrometry data acquisition and approaches for data analysis. Single-shot DIA protocols achieve comparable proteomic depth with data-dependent MS approaches without the need for fractionation. This allows for better scaling for large sample numbers with high inter-experimental reproducibility. For complete details on the use and execution of this protocol, please refer to Ryan et al. (2022).
Project description:Objective and designPhagocytosis and clearance of apoptotic cells are essential for inflammation resolution, efficient wound healing, and tissue homeostasis. MicroRNAs are critical modulators of macrophage polarization and function. The current study aimed to investigate the role of miR-181c-5p in macrophage phagocytosis.Materials and methodsmiR-181c-5p was identified as a potential candidate in microRNA screening of RAW264.7 macrophages fed with apoptotic cells. To investigate the role of miR-181c-5p in phagocytosis, the expression of miR-181c-5p was assessed in phagocyting bone marrow-derived macrophages. Phagocytosis efficiency was measured by fluorescence microscopy. Gain- and loss-of-function studies were performed using miR-181c-5p-specific mimic and inhibitor. The expression of the phagocytosis-associated genes and proteins of interest was evaluated by RT2 profiler PCR array and western blotting, respectively.ResultsmiR-181c-5p expression was significantly upregulated in the phagocyting macrophages. Furthermore, mimic-induced overexpression of miR-181c-5p resulted in the increased phagocytic ability of macrophages. Moreover, overexpression of miR-181c-5p resulted in upregulation of WAVE-2 in phagocyting macrophages, suggesting that miR-181c-5p may regulate cytoskeletal arrangement during macrophage phagocytosis.ConclusionAltogether, our data provide a novel function of miR-181c-5p in macrophage biology and suggest that targeting macrophage miR-181c-5p in injured tissues might improve clearance of dead cells and lead to efficient inflammation resolution.
Project description:Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.